Browse Articles

Filter By:

  • The use of data science tools in catalysis research has experienced a surge in the past 10–15 years. This Review provides a holistic overview and categorization of the field across the various approaches and subdisciplines in catalysis.

    • Manu Suvarna
    • Javier Pérez-Ramírez
    Review Article
  • Synthetic methylotrophic organisms provide potential for valorization of greenhouse gas-derived methanol. Here an Escherichia coli strain is generated that reaches a similar growth rate on methanol to many natural methylotrophs and is capable of producing chemicals from this carbon source.

    • Michael A. Reiter
    • Timothy Bradley
    • Julia A. Vorholt
    ArticleOpen Access
  • The tunable design of molecular catalysts presents opportunities for the control of product selectivity in CO2 reduction, yet to date, complexes capable of producing multicarbon products have been elusive. Here, a Br-bridged dinuclear Cu(I) complex that turns over C3H7OH is reported.

    • Naonari Sakamoto
    • Keita Sekizawa
    • Takeshi Morikawa
    ArticleOpen Access
  • The development of superior and cost-effective catalysts for the oxygen reduction and evolution reactions is pivotal for the future hydrogen economy. Now a series of Ru-modified Li2MnO3 catalysts have been designed to optimize the electronic structure and achieve a high performance in both oxygen reduction and evolution reactions, as demonstrated in practical anion exchange membrane fuel cell and water electrolyser tests.

    • Xuepeng Zhong
    • Lijun Sui
    • Jiwei Ma
    Article
  • Photoelectrocatalysis offers the potential to reduce energy demand and provide different selectivity profiles compared with electrocatalytic analogues, but current systems have shown limited rates. Here, recent advances in light concentration and gas diffusion electrodes are integrated into a photoelectrochemical system for coupled glycerol oxidation and CO2/H2O reduction with photocurrent densities above 100 mA cm−2.

    • Ádám Balog
    • Egon Kecsenovity
    • Csaba Janáky
    ArticleOpen Access
  • Oxide-derived copper is well-known as a CO2 reduction electrocatalyst, yet the mechanism of its formation and the structure of the active phase remain unclear. Here the reduction of oxide-derived copper is modelled using large-scale molecular dynamics with a neural network potential, providing important insights into the removal of trapped oxygen under operating conditions.

    • Zan Lian
    • Federico Dattila
    • Núria López
    ArticleOpen Access
  • Photoelectrocatalytic nitrate reduction offers an opportunity for a lower carbon route to ammonia production but has not been realized due to poor efficiency. Here an efficient modified lead halide perovskite photocathode is coupled to glycerol oxidation anode resulting in a bias-free photocurrent density greater than 20 mA cm−2.

    • Ahmad Tayyebi
    • Rashmi Mehrotra
    • Ji-Wook Jang
    Article
  • Polar and steric effects usually dictate the regioselectivity in homolytic aromatic substitution. Now a method for direct ortho-selective C–H amination of aromatics with diverse side chains as directing groups is disclosed, by which the iron catalyst coordinates both the substrate and the aminyl radical.

    • Chao-Rui Ma
    • Guan-Wang Huang
    • Fei Wang
    Article
  • The semihydrogenation of acetylene is an important industrial reaction generally targeted with alloy catalysts and more recently with single-atom catalysts. Here, the authors report a MOF-supported Pd1–Au1 dimeric system that, by merging such approaches, results in high performance levels under simulated front-end industrial conditions.

    • Jordi Ballesteros-Soberanas
    • Nuria Martín
    • Antonio Leyva-Pérez
    ArticleOpen Access
  • The development of bimetallic catalysts is often hindered by the heavy workload of the classical trial-and-error method. Now, a distinct mechanism demonstrates that breaking down the net thermochemical reaction into the corresponding electrochemical half-reactions offers a facile approach to design bimetallic catalysts by analysing each putative half-reaction.

    • Bo-Hang Zhao
    • Bin Zhang
    News & Views
  • While skeletal editing stands as a powerful approach for simplifying synthetic procedures and obtaining complex molecules, viable methodologies remain limited. Now, a smart photoredox protocol, involving the insertion of carbon atoms into the indene core, gives access to a wide library of functionalized naphthalenes.

    • Marina Sicignano
    • Paolo Costa
    News & Views
  • The lack of stability of critical raw material-free electrocatalysts during the oxygen evolution reaction in acidic electrolytes lies beneath the use of Ir-based electrocatalysts in polymeric water electrolysis. Here, a strategy to enhance γ-MnO2 stability in acid is proposed. Theoretical and spectroscopic approaches reveal that increasing the fraction of O atoms in the appropriate position, namely Opla, prevents Mn dissolution during water electrolysis.

    • Sergio Rojas
    News & Views
  • Ethylene oxide is a key platform chemical that is produced industrially from the epoxidation of ethylene on silver catalysts, but the precise mechanism remains elusive. Now, in a joint computational–experimental effort, a phase of the silver catalyst grown on (100) facets that contains square-pyramidal subsurface oxygens and is stabilized by strongly adsorbed ethylene is identified as the active phase, and the mechanism is revealed.

    • Dongxiao Chen
    • Lin Chen
    • Zhi-Pan Liu
    Article