PRESS RELEASE FROM
MOLECULAR PSYCHIATRY
(http://www.nature.com/mp)

For papers that will be published online on 17 May 2011

This press release is copyrighted to the journal Molecular Psychiatry. Its use is granted only for journalists and news media receiving it directly from the Nature Publishing Group.

*** PLEASE DO NOT REDISTRIBUTE THIS DOCUMENT ***

EMBARGO:
0900 London time (BST) / 0400 US Eastern time / 1700 Japanese time / 1800 Australian Eastern time Tuesday 17 May

Wire services’ stories must always carry the embargo time at the head of each item, and may not be sent out more than 24 hours before that time.

Solely for the purpose of soliciting informed comment on this paper, you may show it to independent specialists - but you must ensure in advance that they understand and accept the embargo conditions.

This press release contains:
• Summaries of newsworthy papers:
 - Linking childhood adversity to cellular aging
 - Gene-environment interaction connects childhood stress and depression

A PDF of the paper mentioned on this release can be found in the Academic journals section of http://press.nature.com. Press contacts for the journals are listed at the end of this release.

Warning: This document, and the Academic Journal paper to which it refers, may contain information that is price sensitive (as legally defined, for example, in the UK Criminal Justice Act 1993 Part V) with respect to publicly quoted companies. Anyone dealing in securities using information contained in this document or in advanced copies of Nature’s content may be guilty of insider trading under the US Securities Exchange Act of 1934.

PICTURES: While we are happy for images from Molecular Psychiatry to be reproduced for the purposes of contemporaneous news reporting, you must also seek permission from the copyright holder (if named) or author of the research paper in question (if not).

HYPE: We take great care not to hype the papers mentioned on our press releases, but are sometimes accused of doing so. If you ever consider that a story has been hyped, please do not hesitate to contact us at press@nature.com, citing the specific example.

PLEASE CITE MOLECULAR PSYCHIATRY AND THE MOLECULAR PSYCHIATRY WEBSITE AS THE SOURCE OF THE FOLLOWING ITEM. IF PUBLISHING ONLINE, PLEASE CARRY A HYPERLINK TO http://www.nature.com/mp/
Linking childhood adversity to cellular aging

DOI: 10.1038/mp.2011.53

Early childhood stress and neglect has an effect on telomere length, a biological marker of aging, reports a study published online this week in Molecular Psychiatry. These results could provide a greater understanding of the impact of early adversity on cellular fitness throughout life.

Naturally telomeres, a region at the end of the chromosomes, shorten during chromosome replication. Recent studies have also found that environmental factors, such as stress, are associated with telomere shortening during adulthood; such accelerated shortening of telomere length has been linked to negative health problems such as heart disease and cognitive decline. How childhood adversity affects telomere length has been unclear.

Stacy Drury and colleagues looked at 136 children in the Bucharest Early Intervention Project—a longitudinal clinical trial of foster care children aged 6 to 30 months. They found that the more time a child younger than five years spent in group institutional care, where they experienced emotional and physical neglect, the shorter the child's telomere length during middle childhood.

These findings highlight the importance of early intervention in young and vulnerable children. The authors do caution that future studies should assess prenatal exposure as well.

Author contact:
Stacy Drury (Tulane University, New Orleans, LA, USA)
Tel: +1 504 988 4794; E-mail: sdrury@tulane.edu

Gene-environment interaction connects childhood stress and depression

DOI: 10.1038/mp.2011.51

A gene-environment interaction may explain the relationship between early life stress, genetic vulnerability, and depression, reports a study in Molecular Psychiatry this week.

The protein brain-derived neurotrophic factor (BDNF) acts on specific neurons, supporting the survival of neurons and promoting the growth and differentiation of new neurons.

Lotte Gerritsen and colleagues looked at the brain volume of a region critical to the development of depression, the subgenual anterior cingulate cortex, in 568 adults who experienced adversity during childhood. They found that a common variation in the gene for BDNF modifies how early life stresses effect the subgenual anterior cingulate cortex.

The authors concluded that reduced regional brain volume due to the variation in the BDNF gene coupled with childhood stress may serve as a risk factor for depression. However, Gerritsen and colleagues do caution that future studies are necessary to fully understand the relationship between the susceptibility of those with the variation in the BDNF gene and stress on the brain.

Author contact:
Lotte Gerritsen (Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands)
Tel: +31 0 24 36 10895; E-mail: l.gerritsen@donders.ru.nl

Editorial contact:
Julio Licinio (The Australian National University, Canberra, Australia)
Tel: +61 2 6125 2550; E-mail: julio.licinio@anu.edu.au
Press contacts:
For media inquiries relating to embargo policy for the journal, Molecular Psychiatry:

Neda Afsarmanesh (Nature New York)
Tel: +1 212 726 9231; E-mail: n. afsarmanesh@us.nature.com

Ruth Francis (Nature London)
Tel: +44 20 7843 4562; E-mail: r.francis@nature.com

About Nature Publishing Group (NPG)

Nature Publishing Group (NPG) is a publisher of high impact scientific and medical information in print and online. NPG publishes journals, online databases and services across the life, physical, chemical and applied sciences and clinical medicine.

Focusing on the needs of scientists, Nature (founded in 1869) is the leading weekly, international scientific journal. In addition, for this audience, NPG publishes a range of Nature research journals and Nature Reviews journals, plus a range of prestigious academic journals including society-owned publications. Online, nature.com provides over 5 million visitors per month with access to NPG publications and online databases and services, including Nature News and NatureJobs plus access to Nature Network and Nature Education's Scitable.com.

Scientific American is at the heart of NPG’s newly-formed consumer media division, meeting the needs of the general public. Founded in 1845, Scientific American is the oldest continuously published magazine in the US and the leading authoritative publication for science in the general media. Together with scientificamerican.com and 15 local language editions around the world it reaches over 3 million consumers and scientists. Other titles include Scientific American Mind and Spektrum der Wissenschaft in Germany.

Throughout all its businesses NPG is dedicated to serving the scientific and medical communities and the wider scientifically interested general public. Part of Macmillan Publishers Limited, NPG is a global company with principal offices in London, New York and Tokyo, and offices in cities worldwide including Boston, Buenos Aires, Delhi, Hong Kong, Madrid, Barcelona, Munich, Heidelberg, Basingstoke, Melbourne, Paris, San Francisco, Seoul and Washington DC. For more information, please go to www.nature.com.