PRESS RELEASE FROM MOLECULAR PSYCHIATRY
(http://www.nature.com/mp)

This press release is copyrighted to the journal Molecular Psychiatry. Its use is granted only for journalists and news media receiving it directly from the Nature Publishing Group.

*** PLEASE DO NOT REDISTRIBUTE THIS DOCUMENT ***

EMBARGO:
0900 London time (BST) / 0400 US Eastern Time / 1700 Japanese time / 1800 Australian Eastern Time Tuesday 29 April 2014

Wire services’ stories must always carry the embargo time at the head of each item, and may not be sent out more than 24 hours before that time.

Solely for the purpose of soliciting informed comment on this paper, you may show it to independent specialists - but you must ensure in advance that they understand and accept the embargo conditions.

This press release contains:

- Summaries of newsworthy papers:
 - Can your brain overcome stress?
 - Schizophrenia and autism may share genetic abnormalities

- Geographical listing of authors

A PDF of the paper mentioned on this release can be found in the Academic Journals section of http://press.nature.com. Press contacts for the journals are listed at the end of this release.

Warning: This document, and the papers to which it refers, may contain sensitive or confidential information not yet disclosed to the public. Using, sharing or disclosing this information to others in connection with securities dealing or trading may be a violation of insider trading under the laws of several countries, including, but not limited to, the UK Financial Services and Markets Act 2000 and the US Securities Exchange Act of 1934, each of which may be subject to penalties and imprisonment.

PICTURES: While we are happy for images from Molecular Psychiatry to be reproduced for the purposes of contemporaneous news reporting, you must also seek permission from the copyright holder (if named) or author of the research paper in question (if not).

HYPE: We take great care not to hype the papers mentioned on our press releases, but are sometimes accused of doing so. If you ever consider that a story has been hyped, please do not hesitate to contact us at press@nature.com, citing the specific example.

PLEASE CITE MOLECULAR PSYCHIATRY AND THE MOLECULAR PSYCHIATRY WEBSITE AS THE SOURCE OF THE FOLLOWING ITEM. IF PUBLISHING ONLINE, PLEASE CARRY A HYPERLINK TO http://www.nature.com/mp/

[1] Can your brain overcome stress?

DOI: 10.1038/MP.2014.28
Traumatic events may have both short- and long-term effects on specific brain structures, and recovery could depend on factors such as self-esteem and prolonged stress, reports a study published in *Molecular Psychiatry*. The work bases its analysis on individuals who directly experienced the Japanese Earthquake of 2011.

Stressful situations are known to affect the brain in the short-term, but little is known about the prolongation of these effects over longer time periods. Atsushi Sekiguchi and colleagues collected magnetic resonance imaging (MRI) data and assessed the psychological characteristics of 37 people who experienced the major earthquake that hit Japan in March of 2011. They did this both immediately and one year after the event occurred.

They find that part of the brain known as the orbitofrontal cortex (OFC) significantly increased in size from immediately after the earthquake to one year post-event. Further analysis suggests that this growth correlated with higher self-esteem scores. This discovery supports previous work that suggests that a reduction in OFC volume is a sign of emotional stress following a traumatic event, but that this alteration is reversible. The authors also found that some effects of the stressful event persisted more than one year after the earthquake; subclinical levels of depression and anxiety remained at the same level as they were immediately after the event, and the size of the hippocampus—a brain structure known to be vulnerable to stress—had decreased.

Sekiguchi and colleagues’ conclude that higher self-esteem, an important resilience trait in the context of stressful life events, could be a predictor of successful regulation of emotional distress and the associated increased OFC volume. While the results imply that stress-induced structural changes in the brain are not static, but dynamic, the authors note that further studies are necessary to examine whether alterations in brain structure due to stress are reversible.

CONTACT
Atsushi Sekiguchi (Tohoku University, Sendai, Japan)
Tel: +81 (0) 22 273 6414; Email: aseki@tohoku.ac.jp

Please link to the scientific paper in online versions of your report (the URL will go live after the embargo ends): http://dx.doi.org/10.1038/MP.2014.128

[2] Schizophrenia and autism may share genetic abnormalities

DOI: 10.1038/MP.2014.29

Mutations in a set of genes that play a role in epigenetic regulation may contribute to both schizophrenia and autism, according to a study published in *Molecular Psychiatry*. The findings suggest that perturbations in epigenetic regulation—where experience and environment affect the function of genes—that affect brain development could have a central role in the susceptibility to, pathogenesis, and treatment of mental disorders.

Schizophrenia is partially heritable, but the biological cause and progression of the disease are not well understood. A wide spectrum of genetic risk factors have been identified, and previous studies suggest that *de novo* mutations (DNMs)—alterations present in an affected individual, but not either parent—are a critical source of genetic risk in schizophrenia.

Shane McCarthy and colleagues performed genetic sequencing on 171 individuals, and analyzed the data to identify DNMs and the genes in which they are present. The results suggest that DNMs may happen at a higher frequency in people with sporadic schizophrenia (as opposed to those with a family history of the disease), and have functional consequences on the genes in which they are found. The authors also compared the genes they identified as having an increased proportion of DNMs to a database containing genetic information on other neurodevelopmental disorders. They found that the genes they identified have been implicated in autism and intellectual disability, supporting genetic overlap between these disorders and schizophrenia. Several of these genes have been shown to function as part of an epigenetic mechanism that regulates gene expression, called chromatin modification, suggesting that this may be an important risk mechanism in the development of these disorders.

CONTACT
Shane McCarthy (Cold Spring Harbor Laboratory, NY, USA)
Tel: +1 516 422 4165; E-mail: mccarthy@cshl.edu
W. Richard McCombie (Cold Spring Harbor Laboratory, NY, USA)
Tel: +1 516 422 4083; E-mail: mccombie@cshl.edu

Aiden Corvin (Trinity College Dublin, Ireland)
Tel: +353 1 896 2468; E-mail: acorvin@tcd.ie

Please link to the scientific paper in online versions of your report (the URL will go live after the embargo ends): http://dx.doi.org/10.1038/MP.2014.29

Editorial contact at Molecular Psychiatry:
Julio Licinio (South Australian Health and Medical Research Institute, Adelaide, Australia)
Tel: +61 8 8116 4400; E-mail: julio.licinio@sahmri.com

**

GEOGRAPHICAL LISTING OF AUTHORS...

The following list of places refers to the whereabouts of authors on the papers numbered in this release. For example, London: 4 - this means that on paper number four, there will be at least one author affiliated to an institute or company in London. The listing may be for an author's main affiliation, or for a place where they are working temporarily. Please see the PDF of the paper for full details.

CANADA
Vancouver: 2

IRELAND
Dublin: 2

JAPAN
Sendai: 1
Tokyo: 1

UNITED STATES OF AMERICA
New York
Cold Spring Harbor: 2

Press contacts:
For media inquiries relating to embargo policy for the journal Molecular Psychiatry:

Rachel Twinn (Nature London)
Tel: +44 20 7843 4658; E-mail: r.twinn@nature.com

Neda Afsarmanesh (Nature New York)
Tel: +1 212 726 9231; E-mail: n.afsarmanesh@us.nature.com

About Nature Publishing Group (NPG)

Nature Publishing Group (NPG) is a publisher of high impact scientific and medical information in print and online. NPG publishes journals, online databases and services across the life, physical, chemical and applied sciences and clinical medicine.
Focusing on the needs of scientists, *Nature* (founded in 1869) is the leading weekly, international scientific journal. In addition, for this audience, NPG publishes a range of *Nature* research journals and *Nature Reviews* journals, plus a range of prestigious academic journals including society-owned publications. Online, nature.com provides over 5 million visitors per month with access to NPG publications and online databases and services, including *Nature News* and *NatureJobs* plus access to *Nature Network* and Nature Education’s Scitable.com.

Scientific American is at the heart of NPG’s newly-formed consumer media division, meeting the needs of the general public. Founded in 1845, *Scientific American* is the oldest continuously published magazine in the US and the leading authoritative publication for science in the general media. Together with scientificamerican.com and 15 local language editions around the world it reaches over 3 million consumers and scientists. Other titles include *Scientific American Mind* and *Spektrum der Wissenschaft* in Germany.

Throughout all its businesses NPG is dedicated to serving the scientific and medical communities and the wider scientifically interested general public. Part of Macmillan Publishers Limited, NPG is a global company with principal offices in London, New York and Tokyo, and offices in cities worldwide including Boston, Buenos Aires, Delhi, Hong Kong, Madrid, Barcelona, Munich, Heidelberg, Basingstoke, Melbourne, Paris, San Francisco, Seoul and Washington DC. For more information, please go to www.nature.com.