Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal

Abstract

Methylation events play a critical role in the ability of growth factors to promote normal development. Neurodevelopmental toxins, such as ethanol and heavy metals, interrupt growth factor signaling, raising the possibility that they might exert adverse effects on methylation. We found that insulin-like growth factor-1 (IGF-1)- and dopamine-stimulated methionine synthase (MS) activity and folate-dependent methylation of phospholipids in SH-SY5Y human neuroblastoma cells, via a PI3-kinase- and MAP-kinase-dependent mechanism. The stimulation of this pathway increased DNA methylation, while its inhibition increased methylation-sensitive gene expression. Ethanol potently interfered with IGF-1 activation of MS and blocked its effect on DNA methylation, whereas it did not inhibit the effects of dopamine. Metal ions potently affected IGF-1 and dopamine-stimulated MS activity, as well as folate-dependent phospholipid methylation: Cu2+ promoted enzyme activity and methylation, while Cu+, Pb2+, Hg2+ and Al3+ were inhibitory. The ethylmercury-containing preservative thimerosal inhibited both IGF-1- and dopamine-stimulated methylation with an IC50 of 1 nM and eliminated MS activity. Our findings outline a novel growth factor signaling pathway that regulates MS activity and thereby modulates methylation reactions, including DNA methylation. The potent inhibition of this pathway by ethanol, lead, mercury, aluminum and thimerosal suggests that it may be an important target of neurodevelopmental toxins.

This is a preview of subscription content, access via your institution

Access options

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sweetman L, Nyhan WL . Excretion of hypoxanthine and xanthine in a genetic disease of purine metabolism. Nature 1967; 215: 859–860.

    Article  CAS  PubMed  Google Scholar 

  2. Stone RL, Aimi J, Barshop BA, Jaeken J, Van den Berghe G, Zalkin H et al. A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nat Genet 1992; 1: 59–63.

    Article  CAS  PubMed  Google Scholar 

  3. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.

    Article  CAS  PubMed  Google Scholar 

  4. Rousseau F, Heitz D, Mandel JL . The unstable and methylatable mutations causing the fragile X syndrome. Hum Mutat 1992; 1: 91–96.

    Article  CAS  PubMed  Google Scholar 

  5. Olney JW, Wozniak DF, Farber NB, Jevtovic-Todorovic V, Bittigau P, Ikonomidou C . The enigma of fetal alcohol neurotoxicity. Ann Med 2002; 34: 109–119.

    Article  CAS  PubMed  Google Scholar 

  6. Lidsky TI, Schneider JS . Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 2003; 126: 5–19.

    Article  PubMed  Google Scholar 

  7. Bernard S, Enayati A, Redwood L, Roger H, Binstock T . Autism: a novel form of mercury poisoning. Med Hypotheses 2001; 56: 462–471.

    Article  CAS  PubMed  Google Scholar 

  8. Vaudry D, Stork PJ, Lazarovici P, Eiden LE . Signaling pathways for PC12 cell differentiation: making the right connections. Science 2002; 296: 1648–1649.

    Article  CAS  PubMed  Google Scholar 

  9. Ehrlich M . Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem 2003; 88: 899–910.

    Article  CAS  PubMed  Google Scholar 

  10. Acheson A, Thoenen H . Both short- and long-term effects of nerve growth factor on tyrosine hydroxylase in calf adrenal chromaffin cells are blocked by S-adenosylhomocysteine hydrolase inhibitors. J Neurochem 1987; 48: 1416–1424.

    Article  CAS  PubMed  Google Scholar 

  11. Cimato TR, Ettinger MJ, Zhou X, Aletta JM . Nerve growth factor-specific regulation of protein methylation during neuronal differentiation of PC12 cells. J Cell Biol 1997; 138: 1089–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cantoni GL . The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Prog Clin Biol Res 1985; 198: 47–65.

    CAS  PubMed  Google Scholar 

  13. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ . Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 2000; 275: 29318–29323.

    Article  CAS  PubMed  Google Scholar 

  14. de la Haba G, Cantoni GL . The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem 1959; 234: 603–608.

    CAS  PubMed  Google Scholar 

  15. Sharma A, Kramer ML, Wick PF, Liu D, Chari S, Shim S et al. D4 dopamine receptor-mediated phospholipid methylation and its implications for mental illnesses such as schizophrenia. Mol Psychiatry 1999; 4: 235–246.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao R, Chen Y, Tan W, Waly M, Sharma A, Stover P et al. Relationship between dopamine-stimulated phospholipid methylation and the single-carbon folate pathway. J Neurochem 2001; 78: 788–796.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma A, Waly M, Deth RC . Protein kinase C regulates dopamine D4 receptor-mediated phospholipid methylation. Eur J Pharmacol 2001; 427: 83–90.

    Article  CAS  PubMed  Google Scholar 

  18. LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N et al. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1996; 1: 121–124.

    CAS  PubMed  Google Scholar 

  19. Deth RC . Molecular Origins of Human Attention. Kluwer Academic Publishers: Boston, 2003.

    Book  Google Scholar 

  20. Banerjee R, Chen Z, Gulati S . Methionine synthase from pig liver. Methods Enzymol 1997; 281: 189–196.

    Article  CAS  PubMed  Google Scholar 

  21. Friso S, Choi SW, Dolnikowski GG, Selhub J . A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem 2002; 74: 4526–4531.

    Article  CAS  PubMed  Google Scholar 

  22. Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B et al. Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 2001; 61: 2782–2787.

    CAS  PubMed  Google Scholar 

  23. Kurihara S, Hakuno F, Takahashi S . Insulin-like growth factor-I-dependent signal transduction pathways leading to the induction of cell growth and differentiation of human neuroblastoma cell line SH-SY5Y: the roles of MAP kinase pathway and PI 3-kinase pathway. Endocr J 2000; 47: 739–751.

    Article  CAS  PubMed  Google Scholar 

  24. Seiler AE, Ross BN, Rubin R . Inhibition of insulin-like growth factor-1 receptor and IRS-2 signaling by ethanol in SH-SY5Y neuroblastoma cells. J Neurochem 2001; 76: 573–581.

    Article  CAS  PubMed  Google Scholar 

  25. Strong MJ, Garruto RM, Joshi JG, Mundy WR, Shafer TJ . Can the mechanisms of aluminum neurotoxicity be integrated into a unified scheme? J Toxicol Environ Health 1996; 48: 599–613.

    Article  CAS  PubMed  Google Scholar 

  26. Mendola P, Selevan SG, Gutter S, Rice D . Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment Retard Dev Disabil Res Rev 2002; 8: 188–197.

    Article  PubMed  Google Scholar 

  27. Bellinger D, Dietrich KN . Low-level lead exposure and cognitive function in children. Pediatr Ann 1994; 23: 600–605.

    Article  CAS  PubMed  Google Scholar 

  28. Canfield RL, Henderson Jr CR, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP . Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med 2003; 348: 1517–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ostrakhovitch EA, Lordnejad MR, Schliess F, Sies H, Klotz LO . Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species. Arch Biochem Biophys 2002; 397: 232–239.

    Article  CAS  PubMed  Google Scholar 

  30. Bernard S, Enayati A, Roger H, Binstock T, Redwood L . The role of mercury in the pathogenesis of autism. Mol Psychiatry 2002; 7: S42–43.

    Article  CAS  PubMed  Google Scholar 

  31. Geier MR, Geier DA . Thimerosal in childhood vaccines, neurodevelopment disorders and heart disease in the United States. J Am Physicians Surg 2003; 8: 6–11.

    Google Scholar 

  32. Sinclair AJ, Palmero I, Holder A, Peters G, Farrell PJ . Expression of cyclin D2 in Epstein–Barr virus-positive Burkitt's lymphoma cell lines is related to methylation status of the gene. J Virol 1995; 69: 1292–1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B et al. Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 2001; 61: 2782–2787.

    CAS  PubMed  Google Scholar 

  34. Conover JC, Yancopoulos GD . Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev Neurosci. 1997; 8: 13–27.

    Article  CAS  PubMed  Google Scholar 

  35. Arsenijevic Y, Weiss S, Schneider B, Aebischer P . Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001; 21: 7194–7202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riaz SS, Jauniaux E, Stern GM, Bradford HF . The controlled conversion of human neural progenitor cells derived from foetal ventral mesencephalon into dopaminergic neurons in vitro. Brain Res Dev Brain Res 2002; 136: 27–34.

    Article  CAS  PubMed  Google Scholar 

  37. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ . Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 2002; 62: 6756–6763.

    CAS  PubMed  Google Scholar 

  38. Zheng WH, Kar S, Quirion R . Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol Pharmacol 2002; 62: 225–233.

    Article  CAS  PubMed  Google Scholar 

  39. Nusser N, Gosmanova E, Zheng Y, Tigyi G . Nerve growth factor signals through TrkA, phosphatidylinositol 3-kinase, and Rac1 to inactivate RhoA during the initiation of neuronal differentiation of PC12 cells. J Biol Chem 2002; 277: 35840–35846.

    Article  CAS  PubMed  Google Scholar 

  40. D'Ercole AJ, Ye P, O'Kusky JR . Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 2002; 36: 209–220.

    Article  CAS  PubMed  Google Scholar 

  41. Ye P, Li L, Richards RG, DiAugustine RP, D'Ercole AJ . Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 2002; 22: 6041–6051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Komoly S, Hudson LD, Webster HD, Bondy CA . Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci USA 1992; 89: 1894–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jurevics H, Largent C, Hostettler J, Sammond DW, Matsushima GK, Kleindienst A et al. Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J Neurochem 2002; 82: 126–136.

    Article  CAS  PubMed  Google Scholar 

  44. Surtees R . Biochemical pathogenesis of subacute combined degeneration of the spinal cord and brain. J Inherit Metab Dis 1993; 16: 762–770.

    Article  CAS  PubMed  Google Scholar 

  45. Scott JM, Dinn JJ, Wilson P, Weir DG . Pathogenesis of subacute combined degeneration: a result of methyl group deficiency. Lancet 1981; 2: 334–337.

    Article  CAS  PubMed  Google Scholar 

  46. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001; 57: 245–254.

    Article  CAS  PubMed  Google Scholar 

  47. Carper RA, Moses P, Tigue ZD, Courchesne E . Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 2002; 16: 1038–10351.

    Article  PubMed  Google Scholar 

  48. Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Lange N, Bakardjiev A et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003; 126: 1182–1192.

    Article  CAS  PubMed  Google Scholar 

  49. Vanhala R, Turpeinen U, Riikonen R . Low levels of insulin-like growth factor-I in cerebrospinal fluid in children with autism. Dev Med Child Neurol 2001; 43: 614–616.

    Article  CAS  PubMed  Google Scholar 

  50. Halmesmaki E, Valimaki M, Karonen SL, Ylikorkala O . Low somatomedin C and high growth hormone levels in newborns damaged by maternal alcohol abuse. Obstet Gynecol 1989; 74: 366–370.

    CAS  PubMed  Google Scholar 

  51. Breese CR, D'Costa A, Ingram RL, Lenham J, Sonntag WE . Long-term suppression of insulin-like growth factor-1 in rats after in utero ethanol exposure: relationship to somatic growth. J Pharmacol Exp Ther 1993; 264: 448–456.

    CAS  PubMed  Google Scholar 

  52. Stickel F, Choi SW, Kim YI, Bagley PJ, Seitz HK, Russell RM et al. Effect of chronic alcohol consumption on total plasma homocysteine level in rats. Alcohol Clin Exp Res 2000; 24: 259–264.

    Article  CAS  PubMed  Google Scholar 

  53. Bleich S, Spilker K, Kurth C, Degner D, Quintela-Schneider M, Javaheripour K et al. Oxidative stress and an altered methionine metabolism in alcoholism. Neurosci Lett 2000; 293: 171–174.

    Article  CAS  PubMed  Google Scholar 

  54. Barak AJ, Beckenhauer HC, Tuma DJ, Badakhsh S . Effects of prolonged ethanol feeding on methionine metabolism in rat liver. Biochem Cell Biol 1987; 65: 230–233.

    Article  CAS  PubMed  Google Scholar 

  55. Mirpuri E, Garcia-Trevijano ER, Castilla-Cortazar I, Berasain C, Quiroga J, Rodriguez-Ortigosa C et al. Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I. Int J Biochem Cell Biol 2002; 34: 242–252.

    Article  CAS  PubMed  Google Scholar 

  56. Toxicological Profile for Lead. US Department of Health and Human Services, P.H.S., Agency for Toxic Substances and Disease Registry; Washington, DC, 1999.

  57. Sanfeliu C, Sebastia J, Cristofol R, Rodriguez-Farre E . Neurotoxicity of organomercurial compounds. Neurotoxicol Res 2003; 5: 283–305.

    Article  Google Scholar 

  58. Mercury Study Report to Congress: Volume I. Environmental Protection Agency, Washington DC, 1997.

  59. Alonso-Aperte E, Ubeda N, Achon M, Perez-Miguelsanz J, Varela-Moreiras G . Impaired methionine synthesis and hypomethylation in rats exposed to valproate during gestation. Neurology 1999; 52: 750–756.

    Article  CAS  PubMed  Google Scholar 

  60. Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 2002; 62: 4519–4524.

    CAS  PubMed  Google Scholar 

  61. Immunization Safety Review: Thimerosal-containing Vaccines and Neurodevelopmental Disorders. Stratton K, Gable A, McCormick MC (Eds.), Institute of Medicine, Washington, DC, 2001 pp 51–54.

  62. Makani S, Gollapudi S, Yel L, Chiplunkar S, Gupta S . Biochemical and molecular basis of thimerosal-induced apoptosis in T cells: a major role of mitochondrial pathway. Genes Immun 2002; 3: 270–278.

    Article  CAS  PubMed  Google Scholar 

  63. Baskin DS, Ngo H, Didenko VV . Thimerosal induces DNA breaks, caspase-3 activation, membrane damage, and cell death in cultured human neurons and fibroblasts. Toxicol Sci 2003; 74: 361–368.

    Article  CAS  PubMed  Google Scholar 

  64. Stajich GV, Lopez GP, Harry SW, Sexson WR . Iatrogenic exposure to mercury after hepatitis B vaccination in preterm infants. J Pediatr 2000; 136: 679–681.

    Article  CAS  PubMed  Google Scholar 

  65. Pichichero ME, Cernichiari E, Lopreiato J, Treanor J . Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: a descriptive study. Lancet 2002; 360: 1737–1741.

    Article  CAS  PubMed  Google Scholar 

  66. Stubbs G, Litt M, Lis E, Jackson R, Voth W, Lindberg A, Litt R . Adenosine deaminase activity decreased in autism. J Am Acad Child Psychiatry 1982; 21: 71–74.

    Article  CAS  PubMed  Google Scholar 

  67. Persico AM, Militerni R, Bravaccio C, Schneider C, Melmed R, Trillo S et al. Adenosine deaminase alleles and autistic disorder: case–control and family-based association studies. Am J Med Genet 2000; 96: 784–790.

    Article  CAS  PubMed  Google Scholar 

  68. Bottini N, De Luca D, Saccucci P, Fiumara A, Elia M, Porfirio MC et al. Autism: evidence of association with adenosine deaminase genetic polymorphism. Neurogenetics 2001; 3: 111–113.

    Article  CAS  PubMed  Google Scholar 

  69. Page T, Yu A, Fontanesi J, Nyhan WL . Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci USA 1997; 94: 11601–11606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Page T, Coleman M . De novo purine synthesis is increased in the fibroblasts of purine autism patients. Adv Exp Med Biol 1998; 431: 793–796.

    Article  CAS  PubMed  Google Scholar 

  71. Nyhan WL . The recognition of Lesch–Nyhan syndrome as an inborn error of purine metabolism. J Inherit Metab Dis 1997; 20: 171–178.

    Article  CAS  PubMed  Google Scholar 

  72. Yeargin-Allsopp M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C . Prevalence of autism in a US metropolitan area. JAMA 2003; 289: 49–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Deth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waly, M., Olteanu, H., Banerjee, R. et al. Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9, 358–370 (2004). https://doi.org/10.1038/sj.mp.4001476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001476

Keywords

This article is cited by

Search

Quick links