Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Genome-wide scan in a large complex pedigree with predominantly male schizophrenics from the island of Kosrae: evidence for linkage to chromosome 2q

Abstract

It is widely accepted that founder populations hold promise for mapping loci for complex traits. However, the outcome of these mapping efforts will most likely depend on the individual demographic characteristics and historical circumstances surrounding the founding of a given genetic isolate. The ‘ideal’ features of a founder population are currently unknown. The Micronesian islandic population of Kosrae, one of the four islands comprising the Federated States of Micronesia (FSM), was founded by a small number of settlers and went through a secondary genetic ‘bottleneck’ in the mid-19th century. The potential for reduced etiological (genetic and environmental) heterogeneity, as well as the opportunity to ascertain extended and statistically powerful pedigrees makes the Kosraen population attractive for mapping schizophrenia susceptibility genes. Our exhaustive case ascertainment from this islandic population identified 32 patients who met DSM-IV criteria for schizophrenia or schizoaffective disorder. Three of these were siblings in one nuclear family, and 27 were from a single large and complex schizophrenia kindred that includes a total of 251 individuals. One of the most startling findings in our ascertained sample was the great difference in male and female disease rates. A genome-wide scan provided initial suggestive evidence for linkage to markers on chromosomes 1, 2, 3, 7, 13, 15, 19, and X. Follow-up multipoint analyses gave additional support for a region on 2q37 that includes a schizophrenia locus previously identified in another small genetic isolate, with a well-established recent genealogical history and a small number of founders, located on the eastern border of Finland. In addition to providing further support for a schizophrenia susceptibility locus at 2q37, our results highlight the analytic challenges associated with extremely large and complex pedigrees, as well as the limitations associated with genetic studies of complex traits in small islandic populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gottesman I, Shields J . Schizophrenia: The Epigenetic Puzzle. Cambridge University Press: New York, 1982.

    Google Scholar 

  2. Gottesman I . Schizophrenia Genesis: The Origins of Madness. W.H. Freeman: New York, 1991.

    Google Scholar 

  3. Kendler KS, Diehl SR . The genetics of schizophrenia: a current, genetic–epidemiologic perspective. Schizophr Bull 1993; 19: 261–285.

    CAS  PubMed  Google Scholar 

  4. Baron M . Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet 2001; 68: 299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacquet H, Raux G, Thibaut F, Hecketsweller B, Houy E, Demilly C et al. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet 2002; 11: 2243–2249.

    Article  CAS  PubMed  Google Scholar 

  7. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Abecasis G, Heath S, Knowles A, Demars S, Chen Y-J et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 16859–16864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hastbacka J, de la Chappelle A, Kaitila I, Sistonen P, Weaver A . Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet 1992; 2: 204–211.

    Article  CAS  PubMed  Google Scholar 

  12. Kalaydjieva L, Hallmayer J, Chandler D, Savov A, Nikolova A, Angelicheva D et al. Gene mapping in gypsies identifies a novel demyelinating neuropathy on chromosome 8q24. Nat Genet 1996; 14: 214–217.

    Article  CAS  PubMed  Google Scholar 

  13. Nystuen A, Benke PJ, Merren J, Stone EM, Sheffield VC . A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum Mol Genet 1996; 5: 525–531.

    Article  CAS  PubMed  Google Scholar 

  14. Visapaa I, Fellman V, Vesa J, Dasvarma A, Hutton JL, Kumar V et al. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 2002; 71: 863–876.

    Article  PubMed  PubMed Central  Google Scholar 

  15. De La Chapelle A, Wright F . Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc Natl Acad Sci USA 1998; 95: 12416–12423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ober C, Cox N . The genetics of asthma. Mapping genes for complex traits in founder populations. Clin Exp Allergy 1998; 28: 101–105.

    Article  PubMed  Google Scholar 

  17. Peltonen L, Palotie A, Lange K . Use of population isolates for mapping complex traits. Nat Rev Genet 2000; 1: 182–190.

    Article  CAS  PubMed  Google Scholar 

  18. Duggirala R, Williams JT, Williams-Blangero S, Blangero J . A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol 1997; 14: 987–992.

    Article  CAS  PubMed  Google Scholar 

  19. Wijsman EM, Amos C . Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol 1997; 14: 719–735.

    Article  CAS  PubMed  Google Scholar 

  20. Williams JT, Duggirala R, Blangero J . Statistical properties of a variance components method for quantitative trait linkage analysis in nuclear families and extended pedigrees. Genet Epidemiol 1997; 14 : 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  21. Dyer T, Blangero J, Williams J, Göring H, Mahaney M . The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol 2001; 21(Suppl 1): S236–S243.

    Article  PubMed  Google Scholar 

  22. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Med Genet 1999; 65: 1114–1124.

    CAS  Google Scholar 

  23. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD et al. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 2000; 9: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  24. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    Article  CAS  PubMed  Google Scholar 

  25. Coon H, Holik J, Hoff M, Reimherr F, Wender P, Myles-Worsley M et al. Analysis of chromosome 22 markers in nine schizophrenia pedigrees. Am J Med Genet 1994; 54: 72–79.

    Article  CAS  PubMed  Google Scholar 

  26. Camp NJ, Neuhausen SL, Tiobech J, Polloi A, Coon H, Myles-Worsley M . Genomewide multipoint linkage analysis of seven extended Palauan pedigrees with schizophrenia, by a Markov-chain Monte Carlo method. Am J Hum Genet 2001; 69: 1278–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Devlin B, Bacanu SA, Roeder K, Reimherr F, Wender P, Galke B et al. Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol Psychiatry 2002; 7: 689–694.

    Article  CAS  PubMed  Google Scholar 

  28. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeLisi LE, Mesen A, Rodriguez C, Bertheau A, LaPrade B, Llach M et al. Genome-wide scan for linkage to schizophrenia in a Spanish-origin cohort from Costa Rica. Am J Med Genet 2002; 114: 497–508.

    Article  PubMed  Google Scholar 

  30. Clegg J . Travels with DNA in the Pacific. Lancet 1994; 34: 1070–1072.

    Article  Google Scholar 

  31. Campbell I . A History of the Pacific Islands. University of California Press: Berkeley & Los Angeles, 1989.

    Google Scholar 

  32. Oliver D . The Pacific Islands, 3rd edn. University of Hawaii Press, Honolulu, 1989.

    Google Scholar 

  33. Irwin G . The Prehistoric Exploration and Colonization of the Pacific. Cambridge University Press: Cambridge, 1992.

    Book  Google Scholar 

  34. Cordy R . The Lelu Stone Ruins (Kosrae, Micronesia) 1978–81 historical and archeological research. Asian and Pacific Archeology series number 10. Social Science Research Institute, University of Hawaii, 1993.

    Google Scholar 

  35. Segal H . Kosrae: The Sleeping Lady Awakens. Kosrae Tourist Division, Department of Conservation and Development, Kosrae State Government: Federated States of Micronesia, 1989.

    Google Scholar 

  36. Shmulewitz D, Auerbach SB, Lehner T, Blundell ML, Winick JD, Youngman LD, Skilling V, Heath SC, Ott J, Stoffel M, Breslow JL, Friedman JM . Epidemiology and factor analysis of obesity, type II diabetes, hypertension, and dyslipidemia (syndrome X) on the Island of Kosrae, Federated States of Micronesia. Hum Hered 2001; 51(1–2): 8–19.

    Article  CAS  PubMed  Google Scholar 

  37. Han Z, Heath SC, Shmulewitz D, Li W, Auerbach SB, Blundell ML et al. Candidate genes involved in cardiovascular risk factors by a family-based association study on the island of Kosrae, Federated States of Micronesia. Am J Med Genet 2002; 110: 234–242.

    Article  PubMed  Google Scholar 

  38. Nurnberger J, Blehar M, Kaufmann C, York-Cooler C, Simpson S, Harkavy-Friedman J et al. Diagnostic interview for genetic studies: rationale, unique features, and training. NIMH genetics initiative. Arch Gen Psychiatry 1994; 51: 849–859.

    Article  PubMed  Google Scholar 

  39. American Psychiatric Association. Diagnostic and Statistical Manual, 4th edn. American Psychiatric Association, Washington, DC, 1994.

  40. Böök J, Wetterberg L, Modrzeewska K . Schizophrenia in a North Swedish geographical isolate, 1900–1977: epidemiology, genetics and biochemistry. Clin Genet 1978; 14: 373–394.

    Article  PubMed  Google Scholar 

  41. Andreasen NC . Schizophrenia: the fundamental questions. Brain Res Rev 2000; 31: 106–112.

    Article  CAS  PubMed  Google Scholar 

  42. DeGirolamo G, Warner R . Schizophrenia. MacMillan/Clays: England, 1995.

    Google Scholar 

  43. Welham J, McLachlan G, Davies G, McGrath J . Heterogeneity in schizophrenia; mixture modelling of age-at-first-admission, gender and diagnosis. Acta Psychiatr Scand 2000; 101: 312–317.

    CAS  PubMed  Google Scholar 

  44. Levinson DF, Mowry BJ, Sharpe L, Endicott J . Penetrance of schizophrenia-related disorders in multiplex families after correction for ascertainment. Genet Epidemiol 1996; 13: 11–21.

    Article  CAS  PubMed  Google Scholar 

  45. Chapman N, Leutenegger A-L, Badzioch M, Bogdan M, Conlon E, Daw E et al. The importance of connections: joining components of the Hutterite pedigree. Genet Epidemiol 2001; 21(Suppl 1): S230–S235.

    Article  PubMed  Google Scholar 

  46. Cottingham RW, Idury RM, Schaffer AA . Faster sequential genetic linkage computations. Am J Hum Genet 1993; 53: 252–263.

    PubMed  PubMed Central  Google Scholar 

  47. Becker A, Geiger D, Schaffer A . Automatic selection of loop breakers for genetic linkage analysis. Hum Heredity 1998; 48: 49–60.

    Article  CAS  PubMed  Google Scholar 

  48. Vieland VJ, Hodge SE, Greenberg DA . Adequacy of single-locus approximations for linkage analyses of oligogenic traits. Genet Epidemiol 1992; 9: 45–59.

    Article  CAS  PubMed  Google Scholar 

  49. Greenberg D, Abreu P, Hodge S . The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet 1998; 63: 870–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abreu P, Greenberg D, Hodge S . Direct power comparison between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet 1999; 65: 847–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ott J . Strategies for characterizing highly polymorphic markers in human gene mapping. Am J Hum Genet 1992; 51: 283–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kapp M, Seuchter SA, Baur MP . The effect of misspecifying allele frequencies in incompletely typed families. Genet Epidemiol 1993; 10: 413–418.

    Article  Google Scholar 

  53. Xu J, Taylor E, Lung F, Chung A, Chase G, Maestri N et al. The impact of some parameters on linkage analysis of Alzheimer's disease. Genet Epidemiol 1993; 10: 407–412.

    Article  CAS  PubMed  Google Scholar 

  54. Daw E, Thompson E, Wijsman E . Bias in multipoint linkage analysis arising from map misspecification. Genet Epidemiol 2000; 19: 336–380.

    Article  Google Scholar 

  55. Ciulla TA, Sklar RM, Hauser SL . A simple method for DNA purification from peripheral blood. Anal Biochem 1988; 174: 485–488.

    Article  CAS  PubMed  Google Scholar 

  56. Brownstein MJ, Carpten JD, Smith JR . Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 1996; 20: 1004–1006, 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  57. Mansfield DC, Brown AF, Green DK, Carothers AD, Morris SW, Evans HJ et al. Automation of genetic linkage analysis using fluorescent microsatellite markers. Genomics 1994; 24: 225–233.

    Article  CAS  PubMed  Google Scholar 

  58. Goldin LR, Chase GA . Improvement of the power to detect complex disease genes by regional inference procedures. Genet Epidemiol 1997; 14: 785–789.

    Article  CAS  PubMed  Google Scholar 

  59. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goddard K . Study design issues in the analysis of complex genetic traits. PhD thesis, University of Washington, Seattle, 1999.

  62. Goldgar DE, Easton DF . Optimal strategies for mapping complex diseases in the presence of multiple loci. Am J Hum Genet 1997; 60: 1222–1232.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McCarthy M, Kruglyak L, Lander E . Sib-pair collection strategies for complex diseases. Genet Epidemiol 1998; 15: 317–340.

    Article  CAS  PubMed  Google Scholar 

  64. Hezel F, Wylie A . Schizophrenia and chronic mental illness in Micronesia: an epidemiological survey. ISLA: J Micronesian Stud 1992; 1: 329–354.

    Google Scholar 

  65. Salem JE, Kring AM . The role of gender differences in the reduction of etiologic heterogeneity in schizophrenia. Clin Psychol Rev 1998; 18: 795–819.

    Article  CAS  PubMed  Google Scholar 

  66. Dohrenwend B, Dohrenwend B . Sex differences and psychiatric disorders. Ann Rev Psychol 1974; 25: 117–152.

    Article  Google Scholar 

  67. Lewine R, Burbach D, Meltzer HY . Effect of diagnostic criteria on the ratio of male to female schizophrenic patients. Am J Psychiatry 1984; 141: 84–87.

    Article  CAS  PubMed  Google Scholar 

  68. Iacono WG, Beiser M . Where are the women in first-episode studies of schizophrenia? Schizophr Bull 1992; 18: 471–480.

    Article  CAS  PubMed  Google Scholar 

  69. Myles-Worsley M, Coon H, Tiobech J, Collier J, Dale P, Wender P et al. Genetic epidemiological study of schizophrenia in Palau, Micronesia: prevalence and familiality. Am J Med Genet 1999; 88: 4–10.

    Article  CAS  PubMed  Google Scholar 

  70. Karayiorgou M, Sobin C, Blundell M, Galke B, Malinova L, Goldberg P et al. Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive–compulsive disorder. Biol Psychiatry 1999; 45: 1178–1189.

    Article  CAS  PubMed  Google Scholar 

  71. Camarena B, Rinetti G, Cruz C, Gomez A, de La Fuente JR, Nicolini H . Additional evidence that genetic variation of MAO-A gene supports a gender subtype in obsessive–compulsive disorder. Am J Med Genet 2001; 105: 279–282.

    Article  CAS  PubMed  Google Scholar 

  72. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bale TL, Picetti R, Contarino A, Koob GF, Vale WW, Lee KF . Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci 2002; 22: 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Riecher-Rossler A, Hafner H, Stumbaum M, Maurer K, Schmidt R . Can estradiol modulate schizophrenic symptomatology? Schizophr Bull 1994; 20: 203–214.

    Article  CAS  PubMed  Google Scholar 

  75. Konnecke R, Hafner H, Maurer K, Loffler W, van der Heiden W . Main risk factors for schizophrenia: increased familial loading and pre- and peri-natal complications antagonize the protective effect of oestrogen in women. Schizophr Res 2000; 44: 81–93.

    Article  CAS  PubMed  Google Scholar 

  76. Huber TJ, Rollnik J, Wilhelms J, von zur Muhlen A, Emrich HM, Schneider U . Estradiol levels in psychotic disorders. Psychoneuroendocrinology 2001; 26: 27–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the families that participated in the study and the Department of Health Services in Kosrae for making the study possible. We also thank Dr Athena Papadakos for diagnostic assessments, Joyce Sigrah for help with the assessments, Elizabeth Gillanders for help with the genotyping, and Steven Auerbach for his input during the initial phases of the project. We also gratefully acknowledge the support from Jeffrey Friedman, Marcus Stoffel and Jan Breslow. Finally, we thank Dr Nicola Chapman for assistance with the pedigree drawing in Figure 1. The study was supported by NIH MH61399 and a young investigator award from the National Alliance for Research on Shizophrenia and Depression (MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Karayiorgou.

Additional information

Electronic-database information

ABI, http://www2.perkin-elmer.com/ab/apply/dr/lmsv2/index.html (for the ABI markers)

Marshfield Medical Research Foundation, Center for Medical Genetics, http://research.marshfieldclinic.org/genetics (for the Marshfield maps)

Pangaea web site, http://www.stat.washington.edu/thompson/Genepi/pangaea.shtml (for the program Pedpack).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijsman, E., Rosenthal, E., Hall, D. et al. Genome-wide scan in a large complex pedigree with predominantly male schizophrenics from the island of Kosrae: evidence for linkage to chromosome 2q. Mol Psychiatry 8, 695–705 (2003). https://doi.org/10.1038/sj.mp.4001356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001356

Keywords

This article is cited by

Search

Quick links