Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Article
  • Published:

Glutamatergic mechanisms in addiction

Abstract

Traditionally, addiction research in neuroscience has focused on mechanisms involving dopamine and endogenous opioids. More recently, it has been realized that glutamate also plays a central role in processes underlying the development and maintenance of addiction. These processes include reinforcement, sensitization, habit learning and reinforcement learning, context conditioning, craving and relapse. In the past few years, some major advances have been made in the understanding of how glutamate acts and interacts with other transmitters (in particular, dopamine) in the context of processes underlying addiction. It appears that while many actions of glutamate derive their importance from a stimulatory interaction with the dopaminergic system, there are some glutamatergic mechanisms that contribute to addiction independent of dopaminergic systems. Among those, context-specific aspects of behavioral determinants (ie control over behavior by conditioned stimuli) appear to depend heavily on glutamatergic transmission. A better understanding of the underlying mechanisms might open new avenues to the treatment of addiction, in particular regarding relapse prevention.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Koob GF . Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 1992; 13: 177–184.

    PubMed  CAS  Google Scholar 

  2. Spanagel R, Weiss F . The dopamine hypothesis of reward: past and current status. Trends Neurosci 1999; 22: 521–527.

    PubMed  CAS  Google Scholar 

  3. Bardo MT . Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 1998; 12: 37–67

    PubMed  CAS  Google Scholar 

  4. Christie MJ, Summers RJ, Stephenson JA, Cook CJ, Beart PM ..Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience 1987; 22: 425–439.

    PubMed  CAS  Google Scholar 

  5. Gorelova N, Yang CR ..The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat.. Neuro-science 1997; 76: 689–706.

    CAS  Google Scholar 

  6. Groenewegen HJ, Vermeulen-Van der Zee A, Te Kortschot A, Witter MP . Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris-leucoagglutinin. Neuroscience 1987; 23: 103–112.

    PubMed  CAS  Google Scholar 

  7. Kelley AE, Domesick VB, Nauta WJH .The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods. Neuroscience 1982; 7: 615–630.

    PubMed  CAS  Google Scholar 

  8. Everitt BJ, Morris KA, O'Brien A, Robbins TW ..The basolateral amygdala–ventral striatal system and conditioned place preference: further evidence of limbic–striatal interactions underlying reward-related processes. Neuroscience 1991; 42: 1–18.

    PubMed  CAS  Google Scholar 

  9. Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW ..Associative processes in addiction and reward. The role of amygdala–ventral striatal subsystems. Ann NY Acad Sci 1999; 877: 412–438.

    PubMed  CAS  Google Scholar 

  10. Tzschentke TM ..Pharmacology and behavioural pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001; 63: 241–320.

    CAS  Google Scholar 

  11. Tzschentke TM, Schmidt WJ .Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 2000; 14: 131–142.

    PubMed  CAS  Google Scholar 

  12. Blaha CD, Yang CR, Floresco SB, Barr AM, Phillips AG . Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci 1997; 9: 902–911.

    PubMed  CAS  Google Scholar 

  13. Floresco SB, Yang CR, Phillips AG, Blaha CD . Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anesthetised rat.. Eur J Neurosci 1998; 10: 1241–1251.

    PubMed  CAS  Google Scholar 

  14. Youngren KD, Daly DA, Moghaddam B . Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. J Pharmacol Exp Ther 1993; 264: 289–293.

    PubMed  CAS  Google Scholar 

  15. Cornish JL, Kalivas PW . Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 2000; 20: RC89 (1–5) (online).

    PubMed  CAS  Google Scholar 

  16. Cornish JL, Duffy P, Kalivas PW . A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 1999; 93: 1359–1367.

    PubMed  CAS  Google Scholar 

  17. O'Donnell P, Grace AA . Physiological and morphological properties of accumbens core and shell neurons recorded in vitro Synapse 1993; 13: 135–160.

    PubMed  CAS  Google Scholar 

  18. Floresco SB, Blaha CD, Yang CR, Phillips AG . Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci 2001; 21: 2851–2860.

    PubMed  CAS  Google Scholar 

  19. Yang CR, Seamans JK, Gorelova N . Electrophysiological and morphological properties of layers V–VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci 1996; 16: 1904–1921.

    PubMed  CAS  Google Scholar 

  20. Lewis BL, O'Donnell P . Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D1 dopamine receptors. Cereb Cortex 2000; 10: 1168–1175.

    PubMed  CAS  Google Scholar 

  21. Pierce RC, Bell K, Duffy P, Kalivas PW . Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 1996; 16: 1550–1560.

    PubMed  CAS  Google Scholar 

  22. Reid MS, Berger SP . Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. Neuroreport 1996; 7: 1325–1329.

    PubMed  CAS  Google Scholar 

  23. Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW . Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 1998; 82: 1103–1114.

    PubMed  CAS  Google Scholar 

  24. Tzschentke TM, Schmidt WJ . Functional heterogeneity of the rat medial prefrontal cortex: effects of discrete subarea-specific lesions on drug-induced conditioned place preference and behavioural sensitization. Eur J Neurosci 1999; 11: 4099–4109.

    PubMed  CAS  Google Scholar 

  25. Feenstra MGP, Botterblom MHA, van Uum JFM . Behavioral arousal and increased dopamine efflux after blockade of NMDA-receptors in the prefrontal cortex are dependent on activation of glutamatergic neurotransmission. Neuropharmacology 2002; 42: 752–763.

    PubMed  CAS  Google Scholar 

  26. Carlezon WA, Wise RA . Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J Neurosci 1996; 16: 3112–3122.

    PubMed  CAS  Google Scholar 

  27. Schultz W, Apicella P, Scarnati E, Ljungberg T . Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 1992; 12: 4595–4610.

    PubMed  CAS  Google Scholar 

  28. Peoples LL, West MO . Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration. J Neurosci 1996; 16: 3459–3473.

    PubMed  CAS  Google Scholar 

  29. Moratalla R, Elibol B, Vallejo M, Graybiel AM . Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 1996; 17: 147–156.

    PubMed  CAS  Google Scholar 

  30. Kelz MB, Nestler EJ . ΔFosB: a molecular switch underlying long-term neural plasticity.. Curr Opin Neurol 2000; 13: 715–720.

    PubMed  CAS  Google Scholar 

  31. Pennartz CM, Groenewegen HJ, Lopes da Silva FH . The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioral, electrophysiological and anatomical data. Prog Neurobiol 1994; 42: 719–761.

    PubMed  CAS  Google Scholar 

  32. Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottini C, Tacconi S et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001; 4: 873–874.

    PubMed  CAS  Google Scholar 

  33. Tallaksen-Greene SJ, Kaatz KW, Romano C, Albin RL . Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons. Brain Res 1998; 780: 210–217.

    PubMed  CAS  Google Scholar 

  34. Ghasemzadeh MB, Nelson LC, Lu XY, Kalivas PW . Neuroadaptations in ionotropic and metabotropic glutamate receptors by chronic cocaine. J Neurochem 1999; 72: 157–165.

    PubMed  CAS  Google Scholar 

  35. White FJ, Kalivas PW . Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 1998; 51: 141–153.

    PubMed  CAS  Google Scholar 

  36. Robinson TE, Berridge KC . The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 1993; 18: 247–291.

    PubMed  CAS  Google Scholar 

  37. Robinson TE, Becker JB . Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 1986; 11: 157–198.

    CAS  Google Scholar 

  38. De Vries TJ, Schoffelmeer ANM, Binnekade R, Mulder AH, Vanderschuren LJMJ . Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur J Neurosci 1998; 10: 3565–3571.

    PubMed  CAS  Google Scholar 

  39. Schenk S, Partridge B . Sensitization to cocaine's reinforcing effects produced by various cocaine pretreatment regimens in rats. Pharmacol Biochem Behav 2000; 66: 765–770.

    PubMed  CAS  Google Scholar 

  40. Piazza PV, Le Moal M . Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 1996; 36: 359–378.

    PubMed  CAS  Google Scholar 

  41. Stewart J, Badiani A . Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 1993; 4: 289–312.

    PubMed  CAS  Google Scholar 

  42. Stewart J, Vezina P . Extinction procedures abolish conditioned stimulus control but spare sensitized responding to amphetamine. Behav Pharmacol 1991; 2: 65–71.

    PubMed  Google Scholar 

  43. Perugini M, Vezina P . Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens amphetamine. J Pharmacol Exp Ther 1994; 270: 690–696.

    PubMed  CAS  Google Scholar 

  44. Pierce RC, Kalivas PW . A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 1997; 25: 192–216.

    PubMed  CAS  Google Scholar 

  45. Vanderschuren LJMJ, Kalivas PW . Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 2000; 151: 99–120.

    PubMed  CAS  Google Scholar 

  46. Carey RJ, Gui J . Cocaine conditioning and cocaine sensitization: what is the relationship? Behav Brain Res 1998; 92: 67–76.

    PubMed  CAS  Google Scholar 

  47. Anagnostaras SG, Robinson TE . Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav Neurosci 1996; 110: 1397–1414.

    PubMed  CAS  Google Scholar 

  48. Crombag HS, Badiani A, Maren S, Robinson TE . The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behav Brain Res 2000; 116: 1–22.

    PubMed  CAS  Google Scholar 

  49. Crombag HS, Badiani A, Chan J, Dell'Orco J, Dineen SP, Robinson TE . The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology 2001; 24: 680–690.

    PubMed  CAS  Google Scholar 

  50. Hotsenpiller G, Giorgetti M, Wolf ME . Alterations in behavior and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 2001; 14: 1843–1855.

    PubMed  CAS  Google Scholar 

  51. Panlilio LV, Schindler CW . Conditioned locomotor-activating and reinforcing effects of discrete stimuli paired with intraperitoneal cocaine. Behav Pharmacol 1997; 8: 691–698.

    PubMed  CAS  Google Scholar 

  52. Jog MS, Kubots Y, Connolly CI, Hillegaart V, Graybiel AM . Building neural representations of habits. Science 1999; 286: 1745–1749.

    PubMed  CAS  Google Scholar 

  53. White NM . Mnemonic functions of the basal ganglia. Curr Opin Neurobiol 1997; 7: 164–169.

    PubMed  CAS  Google Scholar 

  54. Robbins TW, Everitt BJ . Drug addiction: bad habits add up. Nature 1999; 398: 567–570.

    PubMed  CAS  Google Scholar 

  55. White FJ, Hu XT, Zhang XF, Wolf ME . Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J Pharmacol Exp Ther 1995; 273: 445–454.

    PubMed  CAS  Google Scholar 

  56. Zhang XF, Hu XT, White FJ, Wolf ME . Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther 1997; 281: 699–706.

    PubMed  CAS  Google Scholar 

  57. Churchill L, Swanson CJ, Urbina M, Kalivas PW . Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J Neurochem 1999; 72: 2397–2403.

    PubMed  CAS  Google Scholar 

  58. Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ . Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 1996; 16: 274–282.

    PubMed  CAS  Google Scholar 

  59. Ungless MA, Whistler JL, Malenka RC, Bonci A . Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001; 411: 583–587.

    PubMed  CAS  Google Scholar 

  60. Thomas MJ, Beurrier C, Bonci A, Malenka RC . Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 2001; 4: 1217–1223.

    PubMed  CAS  Google Scholar 

  61. Nakamura M, Bell K, Cornish JL, Kalivas PW . Neural substrates mediating context-dependent sensitization to psychostimulants. Psychobiology 1999; 27: 287–291.

    CAS  Google Scholar 

  62. Bell K, Kalivas PW . Context-specific cross-sensitization between systemic cocaine and intra-accumbens AMPA infusion in the rat. Psychopharmacology 1996; 127: 377–383.

    PubMed  CAS  Google Scholar 

  63. Bell K, Duffy P, Kalivas PW . Context-specific enhancement of glutamate transmission by cocaine. Neuropsychopharmacology 2000; 23: 335–344.

    PubMed  CAS  Google Scholar 

  64. Giorgetti M, Hotsenpiller G, Ward P, Teppen T, Wolf ME . Amphetamine-induced plasticity of AMPA receptors in the ventral tegmental area: effects on extracellular levels of dopamine and glutamate in freely moving rats. J Neurosci 2001; 21: 6362–6369.

    PubMed  CAS  Google Scholar 

  65. Kalivas PW, Duffy P . Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J Neurochem 1998; 70: 1497–1502.

    PubMed  CAS  Google Scholar 

  66. Lu W, Monteggia LM, Wolf ME . Repeated administration of amphetamine or cocaine does not alter AMPA receptor subunit expression in the rat midbrain. Neuropsychopharmacology 2002; 26: 1–13.

    PubMed  Google Scholar 

  67. Sidiropoulou K, Chao S, Lu W, Wolf ME . Amphetamine administration does not alter protein levels of the GLT-1 and EAAC1 glutamate transporter subtypes in rat midbrain, nucleus accumbens, striatum, or prefrontal cortex. Mol Brain Res 2001; 90: 187–192.

    PubMed  CAS  Google Scholar 

  68. Wolffgramm J, Heyne A . From controlled drug intake to loss control: the irreversible development of drug addiction in the rat. Behav Brain Res 1995; 70: 77–94.

    PubMed  CAS  Google Scholar 

  69. Dworkin SI, Mirkis S, Smith JE . Response-dependent versus response-independent presentation of cocaine: differences in the lethal effects of the drug. Psychopharmacology 1995; 117: 262–266.

    PubMed  CAS  Google Scholar 

  70. Kelley AE, Smith-Roe SL, Holahan MR . Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci USA 1997; 94: 12174–12179.

    PubMed  CAS  Google Scholar 

  71. Smith-Roe SL, Kelley AE . Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 2000; 20: 7737–7742.

    PubMed  CAS  Google Scholar 

  72. Schultz W . Predictive reward signal of dopamine neurons. J Neurophysiol 1998; 80: 1–27.

    PubMed  CAS  Google Scholar 

  73. Pennartz CMA, McNaughton BL, Mulder AB . The glutamate hypothesis of reinforcement learning. In: Uylings HBM, Van Eden CG, De Bruin JPC, Feenstra MGP, Pennartz CMA (eds). Progress in Brain Research. Vol. 126. Elsevier Science: Amsterdam, 2000, pp 231–253.

    Google Scholar 

  74. Childress AR, Mozely PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP . Limbic activation during cue-induced craving. Am J Psychiatry 1999; 156: 11–18.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ. et al Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 2000; 157: 1789–1798.

    PubMed  CAS  Google Scholar 

  76. Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C et al. Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 1996; 93: 12040–12045.

    PubMed  CAS  Google Scholar 

  77. Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F et al. Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 2001; 58: 334–341.

    PubMed  CAS  Google Scholar 

  78. Maas LC, Lukas SE, Kaufman MJ, Weiss RD, Daniels SL, Rogers VW et al. Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am J Psychiatry 1998; 155: 124–126.

    PubMed  CAS  Google Scholar 

  79. Wang GJ, Volkow ND, Fowler JS, Cervany P, Hitzemann RJ, Pappas NR et al. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci 1999; 64: 775–784.

    PubMed  CAS  Google Scholar 

  80. Wexler BE, Gottschalk CH, Fulbright RK, Prohovnik I, Lacadie CM, Rounsaville BJ et al. Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry 2001; 158: 86–95.

    PubMed  CAS  Google Scholar 

  81. Grimm J, See R . Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 2000; 22: 473–479.

    PubMed  CAS  Google Scholar 

  82. Kruzich PJ, See RE . Differential contributions of the basolateral and central amygdala in the acquisition and expression of conditioned relapse to cocaine-seeking behavior. J Neurosci 2001; 21: RC155 (1–5) (online).

    PubMed  CAS  Google Scholar 

  83. Meil WM, See RE . Lesions of the basolateral amygdala abolish the ability of drug-associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 1997; 87: 139–148.

    PubMed  CAS  Google Scholar 

  84. McFarland K, Kalivas PW . The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2001; 21: 8655–8663.

    PubMed  CAS  Google Scholar 

  85. Park WK, Bari AA, Jey AR, Anderson SM, Spealman RD, Rowlett JK et al. Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 2002; 22: 2916–2925.

    PubMed  CAS  Google Scholar 

  86. Brinley-Reed M, McDonald AJ . Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Res 1999; 850: 127–135.

    PubMed  CAS  Google Scholar 

  87. See RE, Kruzich PJ, Grimm JW . Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology 2001; 154: 301–310.

    PubMed  CAS  Google Scholar 

  88. Tran-Nguyen LTL, Fuchs RA, Coffey GP, Baker DA, O'Dell LE, Neisewander JL . Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 1998; 19: 48–59.

    PubMed  CAS  Google Scholar 

  89. Weiss F, Maldonado-Vlaar CS, Parsons LH, Kerr TM, Smith DL, Ben-Shahar O . Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci USA 2000; 97: 4321–4326.

    PubMed  CAS  Google Scholar 

  90. Rosenkranz JA, Grace AA . Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 1999; 19: 11027–11039.

    PubMed  CAS  Google Scholar 

  91. Rosenkranz JA, Grace AA . Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 2001; 21: 4090–4103.

    PubMed  CAS  Google Scholar 

  92. Rosenkranz JA, Grace AA . Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 2002; 22: 324–337.

    PubMed  CAS  Google Scholar 

  93. Harmer CJ, Hitchcott PK, Morutto SL, Phillips GD . Repeated D-amphetamine enhances stimulated mesoamygdaloid dopamine transmission. Psychopharmacology 1997; 132: 247–254.

    PubMed  CAS  Google Scholar 

  94. Hayes RJ, Vorel SR, Liu X, Spector J, Lachman H, Gardner EL . Electrical stimulation of the basolateral nucleus of the amygdala reinstates cocaine-seeking behavior. Soc Neurosci Abstr 1999; 25: 559.

    Google Scholar 

  95. Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL . Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 2001; 292: 1175–1178.

    PubMed  CAS  Google Scholar 

  96. Legault M, Rompre PP, Wise RA . Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J Neurosci 2000; 20: 1635–1642.

    PubMed  CAS  Google Scholar 

  97. Gratton A, Hoffer BJ, Gerhardt GA . Effects of electrical stimulation of brain reward sites on release of dopamine in rat: an in vivo electrochemical study. Brain Res Bull 1988; 21: 319–324.

    PubMed  CAS  Google Scholar 

  98. Franklin TR, Druhan JP . Involvement of the nucleus accumbens and medial prefrontal cortex in the expression of conditioned hyperactivity to a cocaine-associated environment in rats. Neuro-psychopharmacology 2000; 23: 633–644.

    CAS  Google Scholar 

  99. Brown EE, Fibiger HC . Cocaine-induced conditioned locomotion: absence of associated increases in dopamine release. Neuroscience 1992; 48: 621–629.

    PubMed  CAS  Google Scholar 

  100. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ . Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 2000; 20: 7489–7495.

    PubMed  CAS  Google Scholar 

  101. Bisaga A, Comer SD, Ward AS, Popik P, Kleber HD, Fischman MW . The NMDA antagonist memantine attenuates the expression of opioid physical dependence in humans. Psychopharmacology 2001; 157: 1–10.

    PubMed  CAS  Google Scholar 

  102. Koyuncuoglu H, Saydam B . The treatment of heroin addicts with dextromorphan: a double-blind comparison of dextromorphan with chlorpromazine. Int J Clin Pharmacol Ther Toxicol 1990; 28: 147–152.

    PubMed  CAS  Google Scholar 

  103. Hölter SM, Danysz W, Spanagel R . Evidence for alcohol anti-craving properties of memantine. Eur J Pharmacol 1996; 314: R1–R2.

    PubMed  Google Scholar 

  104. Rammes G, Mahal B, Putzke J, Parsons C, Spielmanns P, Pestel E et al. The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801. Neuropharmacology 2001; 40: 749–760.

    PubMed  CAS  Google Scholar 

  105. De Vries TJ, Schoffelmeer AN, Binnekade R, Mulder AH, Vanderschuren LJMJ . MK-801 reinstates drug-seeking behaviour in cocaine-trained rats. Neuroreport 1998; 9: 637–640.

    PubMed  CAS  Google Scholar 

  106. Parsons CG . NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 2001; 429: 71–78.

    PubMed  CAS  Google Scholar 

  107. Chizh BA, Headley PM, Tzschentke TM . NMDA receptor antagonists as analgesics: focus on the NR2B subtype. Trends Pharmacol Sci 2001; 22: 636–642.

    PubMed  CAS  Google Scholar 

  108. Wolf ME . The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 1998; 54: 679–720.

    PubMed  CAS  Google Scholar 

  109. Tzschentke TM . Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 1998; 56: 613–672.

    PubMed  CAS  Google Scholar 

  110. Di Ciano P, Everitt BJ . Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 2001; 25: 341–360.

    PubMed  CAS  Google Scholar 

  111. Nestler EJ . Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001; 2: 119–128.

    PubMed  CAS  Google Scholar 

  112. Wise RA . Neurobiology of addiction. Curr Opin Neurobiol 1996; 6: 243–251.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M Tzschentke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzschentke, T., Schmidt, W. Glutamatergic mechanisms in addiction. Mol Psychiatry 8, 373–382 (2003). https://doi.org/10.1038/sj.mp.4001269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001269

Keywords

This article is cited by

Search

Quick links