Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

An in-frame deletion in the α2C adrenergic receptor is common in African–Americans

Abstract

α2 adrenergic receptors are activated by adrenaline and noradrenaline, and three subtypes (ie, A, B, C) have differential affinities for antagonists and medications. The α2c adrenergic receptor (ADRA2C), located on chromosome 4p16.3, is a candidate gene for schizophrenia because it binds clozapine, an atypical neuroleptic useful for treatment-resistant schizophrenia. In addition, ADRA2C binds clonidine which is prescribed for three psychiatric diseases. This report communicates the findings of the genetic scanning of this gene of very tough GC content. The complete coding sequences and splice junctions were scanned with [DOVAM]-S in 104 schizophrenics, and pilot probes of patients with alcoholism (41 patients), cocaine abuse (25 patients), puerperal psychosis (30 patients), attention deficient/hyperactivity disorder (25 patients) and autism (25 patients). Six sequence variants were found, including five silent polymorphisms (allele frequencies 0.6–25%) and an in-frame deletion of a homologous repeat at nucleotides 967–978 (ie, TIDRU1). Genotyping of the normal two repeat unit of the Third Intracytoplasmic Domain Repeat Unit (TIDRU2) and the deleted variant (TIDRU1) revealed that TIDRU1 had allelic frequencies of 39% (11/28) and 3.5% (6/172) in African–American and Caucasian schizophrenics, respectively, and it occurred with equal frequency in controls (44%, 31/70 and 3.0%, 6/198). TIDRU1 occurs at a location similar to the third intracytoplasmic 48-nucleotide repeat unit in the DRD4 that is associated with ADHD. Although these data do not suggest an association of TIDRU1 with schizophrenia, additional studies are needed to see whether TIDRU1 confers a clinical phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP et al. International Union of Pharmacology nomenclature of adrenoceptors Pharmacol Rev 1994 46: 121–136

    CAS  PubMed  Google Scholar 

  2. Berkowitz DE, Price DT, Bello EA, Page SO, Schwinn DA . Localization of messenger RNA for three distinct alpha 2-adrenergic receptor subtypes in human tissues. Evidence for species heterogeneity and implications for human pharmacology Anesthesiology 1994 81: 1235–1244

    Article  CAS  PubMed  Google Scholar 

  3. Maze M, Tranquilli W . Alpha-2 adrenoceptor agonists: defining the role in clinical anesthesia Anesthesiology 1991 74: 581–605

    Article  CAS  PubMed  Google Scholar 

  4. Fitton A, Heel RC . Clozapine. A review of its pharmacological properties, and therapeutic use in schizophrenia Drugs 1990 40: 722–747

    Article  CAS  PubMed  Google Scholar 

  5. Leckman JF, Hardin MT, Riddle MA, Stevenson J, Ort SI, Cohen DJ . Clonidine treatment of Gilles de la Tourette's syndrome Arch Gen Psychiatry 1991 48: 324–328

    Article  CAS  PubMed  Google Scholar 

  6. Jaselskis CA, Cook EH Jr, Fletcher KE, Leventhal BL . Clonidine treatment of hyperactive and impulsive children with autistic disorder J Clin Psychopharmacol 1992 12: 322–327

    Article  CAS  PubMed  Google Scholar 

  7. Fankhauser MP, Karumanchi VC, German ML, Yates A, Karumanchi SD . A double-blind, placebo-controlled study of the efficacy of transdermal clonidine in autism J Clin Psychiatry 1992 53: 77–82

    CAS  PubMed  Google Scholar 

  8. Sobell JL, Heston LL, Sommer SS . Novel association approach for determining the genetic predisposition to schizophrenia: case-control resource and testing of a candidate gene Am J Med Genet 1993 48: 28–35

    Article  CAS  PubMed  Google Scholar 

  9. DeLisi LE, Shaw S, Sherrington R, Nanthakumar B, Shields G, Smith AB et al. Failure to establish linkage on the X chromosome in 301 families with schizophrenia or schizoaffective disorder Am J Med Genet (Neuropsychiatr Genet) 2000 96: 335–341

    Article  CAS  Google Scholar 

  10. Robertson E, Jones I, Benjamin J, Murdoch C, Pelios G, Brockington I et al. Approaches to the ascertainment, recruitment and clinical assessment of women with puerperal psychosis Arch Women's Mental Hlth 2000; (In press

  11. Feng J, Sobell JL, Heston LL, Cook EH Jr, Goldman D, Sommer SS . Scanning of the dopamine D1 and D5 receptor genes by REF in neuropsychiatric patients reveals a novel missense change at a highly conserved amino acid Am J Med Genet 1998 81: 172–178

    Article  CAS  PubMed  Google Scholar 

  12. Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene Am J Hum Genet 1995 56: 993–998

    PubMed  PubMed Central  Google Scholar 

  13. Cook EH Jr, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11–13 markers Am J Hum Genet 1998 62: 1077–1083

    Article  PubMed  PubMed Central  Google Scholar 

  14. Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK . Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype Proc Natl Acad Sci U S A 1988 85: 6301–6305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng J, Sobell JL, Heston LL, Goldman D, Cook E Jr, Kranzler HR et al. Variants in the alpha2A AR adrenergic receptor gene in psychiatric patients Am J Med Genet 1998 81: 405–410

    Article  CAS  PubMed  Google Scholar 

  16. Buzin CH, Wen CY, Nguyen VQ, Nozari G, Mengos A, Li X et al. Scanning by DOVAM-S detects all unique sequence changes in blinded analyses: evidence that the scanning conditions are generic BioTechniques 28 746–753

  17. Liu Q, Feng J, Buzin C, Wen C, Nozari G, Mengos A et al. Detection of Virtually All Mutations-SSCP (DOVAM-S): a rapid method for mutation scanning with virtually 100% sensitivity Biotechniques 1999 26: 932–945

    Article  CAS  PubMed  Google Scholar 

  18. Sarkar G, Cassady J, Bottema CD, Sommer SS . Characterization of polymerase chain reaction amplification of specific alleles Anal Biochem 1990 186: 64–68

    Article  CAS  PubMed  Google Scholar 

  19. Sommer SS, Cassady JD, Sobell JL, Bottema CD . A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria Mayo Clin Proc 1989 64: 1361–1372

    Article  CAS  PubMed  Google Scholar 

  20. Sarkar G, Sommer SS . Access to a messenger RNA sequence or its protein product is not limited by tissue or species specificity Science 1989 244: 331–334

    Article  CAS  PubMed  Google Scholar 

  21. Liu IS, Seeman P, Sanyal S, Ulpian C, Rodgers-Johnson PE, Serjeant GR et al. Dopamine D4 receptor variant in Africans, D4valine194-glycine, is insensitive to dopamine and clozapine: report of a homozygous individual Am J Med Genet 1996 61: 277–282

    Article  CAS  PubMed  Google Scholar 

  22. Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O et al. Multiple dopamine D4 receptor variants in the human population Nature 1992 358: 149–152

    Article  CAS  PubMed  Google Scholar 

  23. Rowe DC, Stever C, Giedinghagen LN, Gard JM, Cleveland HH, Terris ST et al. Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder Mol Psychiatry 1998 3: 419–426

    Article  CAS  PubMed  Google Scholar 

  24. Noble EP, Ozkaragoz TZ, Ritchie TL, Zhang X, Belin TR, Sparkes RS . D2 and D4 dopamine receptor polymorphisms and personality Am J Med Genet 1998 81: 257–267

    Article  CAS  PubMed  Google Scholar 

  25. Vandenbergh DJ, Zonderman AB, Wang J, Uhl GR, Costa PT Jr . No association between novelty seeking and dopamine D4 receptor (D4DR) exon III seven repeat alleles in Baltimore Longitudinal Study of Aging participants Mol Psychiatry 1997 2: 417–419

    Article  CAS  PubMed  Google Scholar 

  26. Gulbrandsen AK, Berle J, Steen VM . Allele frequency and genotype distribution of a novel structural polymorphism in the alpha-2-beta-adrenoceptor gene in bipolar patients and normal control individuals Mol Psychiatry 1999 4: 5107–5108

    Google Scholar 

  27. Buettner VL, Hill KA, Halangoda A, Sommer SS . Tandem-based mutations occur in mouse liver and adipose tissue preferentially as G:C to T:A transversions and accumulate with age Environ Mol Mutagen 1999 33: 320–324

    Article  CAS  PubMed  Google Scholar 

  28. Encio IJ, Detera-Wadleigh SD . The genomic structure of the human glucocorticoid receptor J Biol Chem 1991 266: 7182–7188

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Jeffrey Longmate for power calculations, and Ms Nancy Gee and Ms Yasmin Valenzuela for skilled laboratory assistance. We thank Novartis for funds in partial support of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Zheng, J., Gelernter, J. et al. An in-frame deletion in the α2C adrenergic receptor is common in African–Americans. Mol Psychiatry 6, 168–172 (2001). https://doi.org/10.1038/sj.mp.4000817

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000817

Keywords

This article is cited by

Search

Quick links