Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Millennium Article
  • Published:

Is there an evolutionary mismatch between the normal physiology of the human dopaminergic system and current environmental conditions in industrialized countries?

Abstract

A large body of evidence has recently defined a field theory known as ‘evolutionary mismatch’, which derives its attributes largely from the fact that current environmental conditions are completely different from those in which the human central nervous system evolved. Current views on the evolutionary mismatch theory lack, however, any attempts to define which brain areas or neuronal circuits should be mostly involved in coding such misevolved traits and to what extent our neurobiological knowledge can be applied to the topographical localization of a specific psychopathology. In this respect the mesocorticolimbic dopaminergic circuits have long been misconceptualized as simple reward or reinforcement systems. Instead, they motivate and coordinate the functions of the higher brain areas that mediate planning and foresight and direct finalized movement in both animals and humans. These systems make animals intensely interested in exploring the world around them, but by the same means they also make them susceptible to the environmental stimuli that have been sought and consumed. It is has been speculated that the cortical dopamine targets that developed most recently in phylogeny are of particular functional value, and that the mesocorticolimbic dopaminergic system is involved in more complex integrative functions than previously assumed. In the present paper I will argue that some mental disorders may have their deep roots in the evolutionary mismatch between the normal physiology of the mesocorticolimbic dopaminergic system and the current environmental conditions in affluent societies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Divac I . Monotremunculi and brain evolution Trends Neurosci 1995; 18: 2–4

    Article  CAS  PubMed  Google Scholar 

  2. Wilson DR . Evolutionary epidemiology. Darwinian theory in the service of medicine and psychiatry Acta Biotheoretica 1993; 41: 205–218

    Article  Google Scholar 

  3. Commentary on Greenfield PM, Language tools and brain: the ontogeny and phylogeny of hierarchically organized sequential behavior Behav Brain Sci 1994; 17: 357–365

  4. Povinelli DJ, Preuss TM . Theory of mind: evolutionary history of a cognitive specialization Trends Neurosci 1995; 18: 418–424

    Article  CAS  PubMed  Google Scholar 

  5. Wise RA . The brain and reward. In: Liebman J, Cooper SJ (eds) The Neuro-pharmacological Basis of Reward Oxford University Press: Oxford 1989; 248–262

    Google Scholar 

  6. MacLean PD . Brain evolution relating to family, play and the separation call Arch Gen Psychiatry 1985; 42: 405–417

    Article  CAS  PubMed  Google Scholar 

  7. Le Moal M, Simon H . Mesocorticolimbic dopaminergic network: functional and regulatory roles Physiol Rev 1991; 71: 155–234

    Article  CAS  PubMed  Google Scholar 

  8. Panksepp J . Affective Neuroscience: the Foundations of Human and Animal Emotions Oxford Univ Press 1998; pp53–55

    Google Scholar 

  9. Bertler A, Rosengren E . Occurrence and distribution of catecholamine in brain Acta Physiol Scand 1959; 47: 350–361

    CAS  PubMed  Google Scholar 

  10. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K . Distribution of catechol compounds in human brain Biochem Biophys Acta 1959; 32: 586–588

    Article  CAS  PubMed  Google Scholar 

  11. Berger B . Dopaminergic innervation of the frontal cerebral cortex. Evolutionary trends and functional implications. In: Chauvel P, Delgado-Escueta (eds) Advances in Neurology Vol 57: Raven Press: New York 1992; pp525–544

    Google Scholar 

  12. Berger B, Gaspar P, Verney C . Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates [erratum appears in TINS 1991; 14: 119] TINS 1991; 14: 21–27

    CAS  PubMed  Google Scholar 

  13. Pani AK, Anctil M . Evidence for biosynthesis and catabolism of monoamines in the sea pansy Renilla koellikeri (Cnidaria) Neurochem Int 1994; 25: 465–474

    Article  CAS  PubMed  Google Scholar 

  14. Palladini G, Ruggeri S, Stocchi F, De Pandis MF, Venturini G, Margotta V . A pharmacological study of cocaine activity in planaria Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1996; 115: 41–45

    Article  CAS  PubMed  Google Scholar 

  15. Lett BT, Grant VL . The hedonic effects of amphetamine and pentobarbital in goldfish Pharmacol Biochem Behav 1989; 32: 355–356

    Article  CAS  PubMed  Google Scholar 

  16. Vincent JD, Cardinaud B, Vernier P . Evolution of monoamine receptors and the origin of motivational and emotional systems in vertebrates Bull Acad Natl Med 1998; 182: 1505–1516

    CAS  PubMed  Google Scholar 

  17. Walker RJ, Brooks HL, Holden-Dye L . Evolution and overview of classical transmitter molecules and their receptors Parasitology 1996; 113: S3–S33

    Article  PubMed  Google Scholar 

  18. Cardinaud B, Sugamori KS, Coudouel S, Vincent JD, Niznik HB, Vernier P . Early emergence of three dopamine D1 receptor subtypes in vertebrates. Molecular phylogenetic, pharmacological, and functional criteria defining D1A, D1B, and D1C receptors in European eel Anguilla anguilla J Biol Chem 1997; 272: 2778–2787

    Article  CAS  PubMed  Google Scholar 

  19. Fryxell KJ . The evolutionary divergence of neurotransmitter receptors and second-messenger pathways J Mol Evol 1995; 41: 85–97

    Article  CAS  PubMed  Google Scholar 

  20. Camps M, Kelly PH, Palacios JM . Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species J Neural Transm Gen Sect 1990; 80: 105–127

    Article  CAS  PubMed  Google Scholar 

  21. Nesse RM, Williams GC . Why We Get Sick Random House: New York 1994

    Google Scholar 

  22. McGuire MT, Troisi A . Darwinian Psychiatry Oxford University Press: New York 1998

    Book  Google Scholar 

  23. Ahn S, Phillips AG . Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat J Neurosci 1999; 19: RC29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fiorino DF, Coury A, Phillips AG . Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats J Neurosci 1997; 17: 4849–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fibiger HC . Role of catecholamine transmitters in reward systems: implications for the neurobiology of affect. In: Oreland E (ed) Brain Reward Systems and Abuse New York Press: New York 1987; 61–74

    Google Scholar 

  26. Cenci MA, Kalén P, Mandel RJ, Björklund A . Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat Brain Res 1992; 581: 217–228

    Article  CAS  PubMed  Google Scholar 

  27. Phillips AG, Atkinson LJ, Blackburn JR, Blaha CD . Increased extracellular dopamine in the nucleus accumbens of the rat elicited by a conditioned stimulus for food: an electrochemical study Can J Physiol Pharmacol 1993; 71: 387–393

    Article  CAS  PubMed  Google Scholar 

  28. Berridge KC, Robinson TE . What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 1998; 28: 309–369

    Article  CAS  PubMed  Google Scholar 

  29. Bassareo V, Di Chiara G . Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum J Neurosci 1997; 17: 851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blackburn JR, Pfaus JG, Phillips AG . Dopamine functions in appetitive and defensive behaviors Prog Neurobiol 1992; 39: 247–279

    Article  CAS  PubMed  Google Scholar 

  31. Rolls ET . The Brain and Emotions Oxford University Press: New York 1999

    Google Scholar 

  32. Jacobs GH, Neitz M, Deegan JF, Neitz J . Trichromatic colour vision in New World monkeys Nature 1996; 382: 156–158

    Article  CAS  PubMed  Google Scholar 

  33. Finlay BL, Darlington RB . Linked regularities in the development and evolution of mammalian brains Science 1995; 268: 1578–1584

    Article  CAS  PubMed  Google Scholar 

  34. Rolls ET, Rolls JH . Olfactory sensory-specific satiety in humans Physiol Behav 1997; 61: 461–473

    Article  CAS  PubMed  Google Scholar 

  35. Rolls ET, Baylis LL . Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex J Neurosci 1994; 14: 5437–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gershon ES, Hamovit JH, Guroff JJ, Nurnberger JI . Birth-cohort changes in manic and depressive disorders in relatives of bipolar and schizoaffective patients Arch Gen Psychiatry 1987; 44: 314–319

    Article  CAS  PubMed  Google Scholar 

  37. Pincus HA, Tanielian TL, Marcus SC, Olfson M, Zarin DA, Thompson J et al. Prescribing trends in psychotropic medications: primary care, psychiatry, and other medical specialties JAMA 1998; 279: 526–531

    Article  CAS  PubMed  Google Scholar 

  38. Brown AS, Varma VK, Malhotra S, Jiloha RC, Conover SA, Susser ES . Course of acute affective disorders in a developing country setting J Nerv Ment Dis 1998; 186: 207–213

    Article  CAS  PubMed  Google Scholar 

  39. Nesse RM, Berridge KC . Psychoactive drugs in evolutionary perspective Science 1997; 278: 63–66

    Article  CAS  PubMed  Google Scholar 

  40. Selye H . The evolution of the stress concept Am Sci 1973; 61: 692–696

    CAS  PubMed  Google Scholar 

  41. Akil HA, Morano IM . Stress. In: Kupfer D, Bloom F (eds) Psychopharmacology the Fourth Generation of Progress Raven Press: New York 1995; 773–785

    Google Scholar 

  42. Pani L, Porcella A, Gessa GL . The role of stress in the pathophysiology of the dopaminergic system Mol Psychiatry 2000; 5: 14–21

    Article  CAS  PubMed  Google Scholar 

  43. Kaneyuki H, Yokoo H, Tsuda A, Yoshida M, Mizuki Y, Yamada M et al. Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam Brain Res 1991; 557: 154–161

    Article  CAS  PubMed  Google Scholar 

  44. Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH . Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys Proc Natl Acad Sci USA 1996; 93: 1325–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murphy BL, Arnsten AF, Jentsch JD, Roth RH . Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress, induced impairment J Neurosci 1996; 16: 7768–7775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steketee JD, Kalivas PW . Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region J Pharmacol Exp Ther 1991; 259: 916–924

    CAS  PubMed  Google Scholar 

  47. Sorg BA, Steketee JD . Mechanisms of cocaine-induced sensitization Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 1003–1012

    Article  CAS  PubMed  Google Scholar 

  48. Meiergerd SM, Schenk JO, Sorg BA . Repeated cocaine and stress increase dopamine clearance in the rat medial prefrontal cortex Brain Res 1997; 773: 203–207

    Article  CAS  PubMed  Google Scholar 

  49. Zahrt J, Taylor JR, Mathew RG, Arnsten AF . Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance J Neurosci 1997; 17: 8528–8535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deutch AY, Clark WA, Roth RH . Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress Brain Res 1990; 521: 311–315

    Article  CAS  PubMed  Google Scholar 

  51. Friedhoff AJ, Carr KD, Uysal S, Schweitzer J . Repeated inescapable stress produces a neuroleptic-like effect on the conditioned avoidance response Neuropsychopharmacology 1995; 13: 129–138

    Article  CAS  PubMed  Google Scholar 

  52. Finlay JM, Zigmond MJ . The effect of stress on central dopaminergic neurons: possible clinical implications Neurochem Res 1997; 22: 1387–1394

    Article  CAS  PubMed  Google Scholar 

  53. Haber SN, Fudge JL . The interface between dopamine neurons and the amygdala: implications for schizophrenia Schizophr Bull 1997; 23: 471–482

    Article  CAS  PubMed  Google Scholar 

  54. Davis M . The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction Wiley: New York 1992; 255–305

    Google Scholar 

  55. Gelowitz DL, Kokkinidis L . Enhanced amygdala kindling after electrical stimulation of the ventral tegmental area: implications for fear and anxiety J Neurosci 1999; 19: RC41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertolucci-D'Angio M, Serrano A, Scatton B . Mesocorticolimbic dopaminergic systems and emotional states J Neurosci Methods 1990; 34: 135–142

    Article  CAS  PubMed  Google Scholar 

  57. D'Angio M, Serrano A, Driscoll P, Scatton B . Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high-avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltammetric study Brain Res 1988; 451: 237–247

    Article  CAS  PubMed  Google Scholar 

  58. Louilot A, Taghzouti K, Simon H, Le Moal M . Limbic system, basal ganglia, and dopaminergic neurons. Executive and regulatory neurons and their role in the organization of behavior Brain Behav Evol 1989; 33: 157–161

    Article  CAS  PubMed  Google Scholar 

  59. Gendreau PL, Gariépy JL, Petitto JM, Lewis MH . D1 dopamine receptor mediation of social and nonsocial emotional reactivity in mice: effects of housing and strain difference in motor activity Behav Neurosci 1997; 111: 424–434

    Article  CAS  PubMed  Google Scholar 

  60. Cavazzuti E, Bertolini A, Vergoni AV, Arletti R, Poggioli R, Forgione A et al. l-Sulpiride, at a low, non-neuroleptic dose, prevents conditioned fear stress-induced freezing behavior in rats Psychopharmacology (Berl) 1999; 143: 20–23

    Article  CAS  Google Scholar 

  61. Nader K, LeDoux J . The dopaminergic modulation of fear: quinpirole impairs the recall of emotional memories in rats Behav Neurosci 1999; 113: 152–165

    Article  CAS  PubMed  Google Scholar 

  62. Wehr TA, Giesen HA, Moul DE, Turner EH, Schwartz PJ . Suppression of men's responses to seasonal changes in day length by modern artificial lighting Am J Physiol 1995; 269: R173–R178

    CAS  PubMed  Google Scholar 

  63. Wehr TA . Effect of seasonal changes in daylength on human neuroendocrine function Horm Res 1998; 49: 118–124

    CAS  PubMed  Google Scholar 

  64. Gessa GL, Pani L, Fadda P, Fratta W . Sleep deprivation in the rat: an animal model of mania Eur Neuropsychopharmacol 1995; 5: S89–S93

    Article  Google Scholar 

  65. Fadda P, Martellotta MC, Gessa GL, Fratta W . Dopamine and opioids interactions in sleep deprivation Prog Neuropsychopharmacol Biol Psychiatry 1993; 17: 269–278

    Article  CAS  PubMed  Google Scholar 

  66. Wright JB . Mania following sleep deprivation Br J Psychiatry 1993; 163: 679–680

    Article  CAS  PubMed  Google Scholar 

  67. Angst J . The emerging epidemiology of hypomania and bipolar II disorder J Affect Disord 1998; 50: 143–151

    Article  CAS  PubMed  Google Scholar 

  68. Chou JC, Zito JM, Vitrai J, Craig TJ, Allingham BH, Czobor P . Neuroleptics in acute mania: a pharmacoepidemiologic study Ann Pharmacother 1996; 30: 1396–1398

    Article  CAS  PubMed  Google Scholar 

  69. Changeux JP . L'Homme Neuronal Fayard: Paris 1983

    Google Scholar 

  70. Watanabe M . Reward expectancy in primate prefrontal neurons Nature 1996; 382: 629–632

    Article  CAS  PubMed  Google Scholar 

  71. Sirigu A, Zalla T, Pillon B, Grafman J, Agid Y, Dubois B . Selective impairments in managerial knowledge following pre-frontal cortex damage Cortex 1995; 31: 301–316

    Article  CAS  PubMed  Google Scholar 

  72. Damasio AR . The somatic marker hypothesis and the possible functions of the prefrontal cortex Philos Trans R Soc Lond B Biol Sci 1996; 351: 1413–1420

    Article  CAS  PubMed  Google Scholar 

  73. Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR . Impairment of social and moral behavior related to early damage in human prefrontal cortex Nat Neurosci 1999; 2: 1032–1037

    Article  CAS  PubMed  Google Scholar 

  74. von Zerssen D, Akiskal HS . Personality factors in affective disorders: historical developments and current issues with special reference to the concepts of temperament and character J Affect Disord 1998; 51: 1–5

    Article  CAS  PubMed  Google Scholar 

  75. Akiskal HS . Toward a definition of generalized anxiety disorder as an anxious temperament type Acta Psychiatr Scand Suppl 1998; 393: 66–73

    Article  CAS  PubMed  Google Scholar 

  76. Perugi G, Toni C, Akiskal HS . Anxious-bipolar comorbidity. Diagnostic and treatment challenges Psychiatr Clin North Am 1999; 22: 565–583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Anna Porcella for her critical comments and to David Webb for his precise editorial work on the manuscript. This work was supported by a CNR grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Pani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pani, L. Is there an evolutionary mismatch between the normal physiology of the human dopaminergic system and current environmental conditions in industrialized countries?. Mol Psychiatry 5, 467–475 (2000). https://doi.org/10.1038/sj.mp.4000759

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000759

Keywords

This article is cited by

Search

Quick links