Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments

Abstract

The mesolimbic dopaminergic system is a neuroanatomical key structure for reward and motivation upon which previous studies indicated that antidepressant drugs exert a stimulatory influence, via still unknown neurobiological mechanisms. Here we examined the effects of chronic administration of antidepressants of several classes (amitriptyline, desipramine, imipramine, fluoxetine and tranylcypromine) and repeated electroconvulsive shock treatments (ECT) on dopamine D3 receptor expression in the shell of the nucleus accumbens, a major projection area of the mesolimbic dopaminergic system. Short-term drug treatments had variable effects on D3 receptor mRNA expression. In contrast, treatments for 21 days (with all drugs except fluoxetine) significantly increased D3 receptor mRNA expression in the shell of nucleus accumbens; D3 receptor binding was also significantly increased by amitriptyline or fluoxetine after a 42-day treatment. ECT for 10 days increased D3 receptor mRNA and binding in the shell of nucleus accumbens. D1 receptor and D2 receptor mRNAs were increased by imipramine and amitriptyline, but not by the other treatments. The time-course of altered D3 receptor expression, in line with the delayed clinical efficiency of antidepressant treatment, and the fact that various antidepressant drugs and ECT treatments eventually produced the same effects, suggest that increased expression of the D3 receptor in the shell of nucleus accumbens is a common neurobiological mechanism of antidepressant treatments, resulting in enhanced responsiveness to the mesolimbic dopaminergic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Koob GF . Drugs of abuse: anatomy, pharmacology and function of reward pathways Trends Pharmacol Sci 1992; 13: 177–184

    Article  CAS  PubMed  Google Scholar 

  2. Salamone JD . The involvement of nucleus accumbens dopamine in appetitive and aversive motivation Behav Brain Res 1994; 61: 117–133

    Article  CAS  PubMed  Google Scholar 

  3. Kapur S, Mann J . Role of the dopaminergic system in depression Biol Psychiatry 1992; 32: 1–17

    Article  CAS  PubMed  Google Scholar 

  4. Brown AS, Gershon S . Dopamine and depression J Neural Transm Gen Sect 1993; 91: 75–109

    Article  CAS  PubMed  Google Scholar 

  5. Fibiger HC . Neurobiology of depression: focus on dopamine Adv Biochem Psychopharmacol 1995; 49: 1–17

    CAS  PubMed  Google Scholar 

  6. Willner P . The mesolimbic dopamine system as a target for rapid antidepressant action Int Clin Psychopharmacol 1997; 12: (Suppl 3) S7–S14

    Article  PubMed  Google Scholar 

  7. Silverstone T . Dopamine in manic depressive illness. A pharmacological synthesis J Affect Dis 1985; 8: 225–231

    Article  CAS  PubMed  Google Scholar 

  8. Gessa GL, Pani L, Serra G, Fratta W . Animal models of mania Adv Biochem Psychopharmacol 1995; 49: 43–66

    CAS  PubMed  Google Scholar 

  9. Markou A, Koob GF . Postcocaine anhedonia. An animal model of cocaine withdrawal Neuropsychopharmacology 1991; 4: 17–26

    CAS  PubMed  Google Scholar 

  10. Belmaker RH, Wald D . Haloperidol in normals Br J Psychiatry 1977; 131: 222–223

    Article  CAS  PubMed  Google Scholar 

  11. D'Haenen HA, Bossuyt A . Dopamine D2 receptors in depression measured with single photon emission computed tomography Biol Psychiatry 1994; 35: 128–132

    Article  CAS  PubMed  Google Scholar 

  12. Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP . Clinical and psychometric correlates of dopamine D2 binding in depression Psychol Med 1997; 27: 1247–1256

    Article  CAS  PubMed  Google Scholar 

  13. Zung WW . Review of placebo-controlled trials with bupropion J Clin Psychiatry 1983; 44: 104–114

    CAS  PubMed  Google Scholar 

  14. Kinney JL . Nomifensine maleate: a new second-generation antidepressant Clin Pharmacol 1985; 4: 625–636

    CAS  Google Scholar 

  15. Garattini S . Pharmacology of amineptine, an antidepressant agent acting on the dopaminergic system: a review Int Clin Psychopharmacol 1997; 12 Suppl. 3: S15–S19

    Article  PubMed  Google Scholar 

  16. Maj J, Rogoz Z, Skuza G, Sowinska H . Repeated treatment with antidepressant drugs potentiates the locomotor response to (+)-amphetamine J Pharm Pharmacol 1984; 36: 127–130

    Article  CAS  PubMed  Google Scholar 

  17. Chiodo LA, Bunney BS . Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons J Neurosci 1983; 3: 1607–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. White FJ, Wang RY . Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons Science 1983; 221: 1054–1057

    Article  CAS  PubMed  Google Scholar 

  19. Papp M, Klimek V, Willner P . Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine Psychopharmacology 1994; 115: 441–446

    Article  CAS  PubMed  Google Scholar 

  20. Ichikawa J, Meltzer HY . Effect of antidepressants on striatal and accumbens extracellular dopamine levels Eur J Pharmacol 1995; 281: 255–261

    Article  CAS  PubMed  Google Scholar 

  21. Stewart J, Rajabi H . Initial increases in extracellular dopamine in the ventral tegmental area provide a mechanism for the development of desimipramine-induced sensitization within the midbrain dopamine system Synapse 1996; 23: 258–264

    Article  CAS  PubMed  Google Scholar 

  22. Barkai Al, Durkin M, Nelson HD . Localized alterations of dopamine receptor binding in rat brain by repeated electroconvulsive shock: an autoradiographic study Brain Res 1990; 529: 208–213

    Article  CAS  PubMed  Google Scholar 

  23. Nomikos GG, Zis AP, Damsma G, Fibiger HC . Electroconvulsive shock produces large increases in interstitial concentrations of dopamine in the rat striatum: an in vivo microdialysis study Neuropsychopharmacology 1991; 4: 65–69

    CAS  PubMed  Google Scholar 

  24. Smith SE, Sharp T . Evidence that the enhancement of dopamine function by repeated electroconvulsive shock requires concomitant activation of D1-like and D2-like receptors Psychopharmacology 1997; 133: 77–84

    Article  CAS  PubMed  Google Scholar 

  25. Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C . Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics Nature 1990; 347: 146–151

    Article  CAS  PubMed  Google Scholar 

  26. Lévesque D, Diaz J, Pilon C, Martres M-P, Giros B, Souil E et al. Identification, characterization and localization of the dopamine D3 receptor in rat brain using 7-[3H]-hydroxy-N, N di-n-propyl-2-aminotetralin Proc Natl Acad Sci USA 1992; 89: 8155–8159

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE et al. The accumbens: beyond the core-shell dichotomy J Neuropsychiatry Clin Neurosci 1997; 9: 354–381

    Article  CAS  PubMed  Google Scholar 

  28. Maj J, Dziedzicka-Wasylewska M, Rogoz E, Rogoz Z . Effect of antidepressant drugs administered repeatedly on the dopamine D3 receptors in the rat brain Eur J Pharmacol 1998; 351: 31–37

    Article  CAS  PubMed  Google Scholar 

  29. Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz J-C . Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa Proc Natl Acad Sci USA 1997; 94: 3363–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ridray S, Griffon N, Souil E, Mignon V, Carboni S, Diaz J et al. Coexpression of dopamine D1 and D3 receptors in rat ventral striatum: opposite and synergistic functional interactions Eur J Neurosci 1998; 10: 1676–1686

    Article  CAS  PubMed  Google Scholar 

  31. Porsolt RD, Anton G, Blavet N, Jalfre M . Behavioral despair in rats: a new model sensitive to antidepressant treatments Eur J Pharmacol 1978; 47: 379–391

    Article  CAS  PubMed  Google Scholar 

  32. Steru L, Chermat R, Thierry B, Simon P . The tail suspension test: a new method for screening antidepressants in mice Psychopharmacology (Berl) 1985; 85: 367–370

    Article  CAS  Google Scholar 

  33. Dziedzicka-Wasylewska M, Rogoz R, Klimek V, Maj J . Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain J Neural Transm 1997; 104: 515–524

    Article  CAS  PubMed  Google Scholar 

  34. Dziedzicka-Wasylewska M, Willner P, Papp M . Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment Behav Pharmacol 1997; 8: 607–618

    Article  CAS  PubMed  Google Scholar 

  35. Ainsworth K, Smith SE, Zetterstrom TS, Franklin M, Sharp T . Effects of antidepressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens of the rat Psychopharmacology (Berl) 1998; 140: 470–477

    Article  CAS  Google Scholar 

  36. Le Moine C, Bloch B . Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors Neuroscience 1996; 73: 131–143

    Article  CAS  PubMed  Google Scholar 

  37. Walker PD, Riley LA, Hart HP, Jonakait GM . Serotonin regulation of tachykinin biosynthesis in the rat neostriatum Brain Res 1991; 546: 33–39

    Article  CAS  PubMed  Google Scholar 

  38. Shirayama Y, Mitsushio H, Takashima M, Ichikawa H, Takahashi K . Reduction of substance P after chronic antidepressants treatment in the striatum, substantia nigra and amygdala of the rat Brain Res 1996; 739: 70–78

    Article  PubMed  Google Scholar 

  39. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors Science 1998; 281: 1640–1645

    Article  CAS  PubMed  Google Scholar 

  40. Maj J, Papp M, Skuza G, Bigajska K, Zazula M . The influence of repeated treatment with imipramine, (+)- and (−)-oxaprotiline on behavioural effects of dopamine D-1 and D-2 agonists J Neural Transm 1989; 76: 29–38

    Article  CAS  PubMed  Google Scholar 

  41. Serra G, Collu M, D'Aquila PS, De Montis MG, Gessa GL . Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants Brain Res 1990; 527: 234–243

    Article  CAS  PubMed  Google Scholar 

  42. Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG et al. Selection inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist Nature 1999; 400: 371–375

    Article  CAS  PubMed  Google Scholar 

  43. Gurevich EV, Himes JW, Joyce JN . Developmental regulation of expression of the D3 dopamine receptor in rat nucleus accumbens and islands of Calleja J Pharmacol Exp Ther 1999; 289: 587–598

    CAS  PubMed  Google Scholar 

  44. Willner P, Muscat R, Papp M . Chronic mild stress-induced anhedonia: a realistic animal model of depression Neurosci & Biobehav Rev 1992; 16: 525–534

    Article  CAS  Google Scholar 

  45. Anisman H, Zacharko RM . Depression as a consequence of inadequate neurochemical adaptation in response to stressors Br J Psychiatry 1992; 15: 36–43

    Article  Google Scholar 

  46. Risch SC . Recent advances in depression research: from stress to molecular biology and brain imaging J Clin Psychiatry 1997; 58 Suppl 5: 3–6

    PubMed  Google Scholar 

  47. Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H et al. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia Mol Psychiatry 1999; 4: 163–172

    Article  CAS  PubMed  Google Scholar 

  48. Harkness KL, Monroe SM, Simons AD, Thase M . The generation of life events in recurrent and non-recurrent depression Psychol Med 1999; 29: 135–144

    Article  CAS  PubMed  Google Scholar 

  49. Thierry A-M, Tassin J-P, Blanc G, Glowinski J . Selective activation of mesocortical DA systems by stress Nature 1976; 263: 242–244

    Article  CAS  PubMed  Google Scholar 

  50. Finlay JM, Zigmond MJ . The effects of stress on central dopaminergic neurons: possible clinical implications Neurochem Res 1997; 22: 1387–1394

    Article  CAS  PubMed  Google Scholar 

  51. Gambarana C, Masi F, Tagliamonte A, Scheggi S, Ghiglieri O, De Montis GM . A chronic stress that impairs reactivity in rats also decreases dopaminergic transmission in the nucleus accumbens: a microdialysis study J Neurochem 1999; 72: 2039–2046

    Article  CAS  PubMed  Google Scholar 

  52. Chiodo LA, Antelman SM . Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity Nature 1980; 287: 451–454

    Article  CAS  PubMed  Google Scholar 

  53. Chiodo LA, Antelman SM . Electroconvulsive shock: progressive dopamine autoreceptor subsensitivity independent of repeated treatment Science 1980; 210: 799–801

    Article  CAS  PubMed  Google Scholar 

  54. Ainsworth K, Smith SE, Zetterstrom TS, Pei Q, Franklin M, Sharp T . Effects of antidepressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens Psychopharmacology 1998; 140: 470–477

    Article  CAS  PubMed  Google Scholar 

  55. Brown EE, Nomikos GG, Wilson C, Fibiger HC . Chronic desimipramine enhances the effect of locally applied amphetamine on interstitial concentrations of dopamine in the nucleus accumbens Eur J Pharmacol 1991; 202: 125–127

    Article  CAS  PubMed  Google Scholar 

  56. Prisco S, Esposito E . Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area Br J Pharmacol 1995; 116: 1923–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grenhoff J, Nisell M, Ferre S, Aston-jones G, Svensson TH . Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat J Neural Transm Gen Sect 1993; 93: 11–25

    Article  CAS  PubMed  Google Scholar 

  58. Lévesque D, Martres M-P, Diaz J, Griffon N, Lammers CH, Sokoloff P et al. A paradoxical regulation of the dopamine D3 receptor expression suggests that involvement of an anterograde factor from dopamine neurons Proc Natl Acad Sci USA 1995; 92: 1719–1723

    Article  PubMed  PubMed Central  Google Scholar 

  59. Seroogy KB, Lundgren KH, Tran T, Guthrie KM, Isackson PJ, Gall CM . Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs J Comp Neurol 1994; 342: 321–334

    Article  CAS  PubMed  Google Scholar 

  60. Altar CA, Di Stefano PS . Anterograde transport of neurotrophins in the nervous systems Trends Neurosci 1998; 21: 433–437

    Article  CAS  PubMed  Google Scholar 

  61. Guillin O, Damier L, Griffon N, Diaz J, Carroll P, Schwartz J-C et al. Role of brain-derived neurotrophic factor in the control of D3 receptor expression Eur J Neuropsychopharmacol 1999; 9: S184–S185

    Article  Google Scholar 

  62. Smith MA, Makino S, Kvenansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus J Neurosci 1995; 15: 1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and TrkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments J Neurosci 1995; 15: 7539–7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sautel F, Griffon N, Lévesque D, Pilon C, Schwartz JC, Sokoloff P . A functional test identifies dopamine agonists selective for D3 versus D2 receptors NeuroReport 1995; 6: 329–332

    Article  CAS  PubMed  Google Scholar 

  65. Mierau J, Schneider FJ, Ensinger HA, Chio CL, Lajiness ME, Huff RM . Pramipexole binding and activation of cloned and expressed dopamine D2, D3, D4 receptors Eur J Pharmacol 1995; 290: 29–36

    Article  CAS  PubMed  Google Scholar 

  66. Maj J, Rogoz Z, Skuza G, Kolodziejczyk K . Antidepressant effects of pramipexole, a novel dopamine receptor agonist J Neural Transm 1997; 104: 525–533

    Article  CAS  PubMed  Google Scholar 

  67. Willner P, Lappas S, Cheeta S, Muscat R . Reversal of stress-induced anhedonia by the dopamine receptor agonist, pramipexole Psychopharmacol (Berl) 1994; 115: 454–462

    Article  CAS  Google Scholar 

  68. Goldberg JF, Frye MA, Dunn RT . Pramipexole in refractory bipolar depression Am J Psychiatry 1999; 156: 798

    CAS  PubMed  Google Scholar 

  69. Szegedi A, Wetzel J, Hillert A, Kleiser E, Gaebel W, Benkert O . Pramipexole, a novel selective dopamine agonist in major depression Mov Disord 1996; 11: (Suppl.1) 266

    Google Scholar 

  70. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 2nd edn Academic Press: New York 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

See also the Image page, Molecular Psychiatry 2000; 5: 229

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammers, CH., Diaz, J., Schwartz, JC. et al. Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol Psychiatry 5, 378–388 (2000). https://doi.org/10.1038/sj.mp.4000754

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000754

Keywords

This article is cited by

Search

Quick links