Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heightened extended amygdala metabolism following threat characterizes the early phenotypic risk to develop anxiety-related psychopathology

Abstract

Children with an anxious temperament are prone to heightened shyness and behavioral inhibition (BI). When chronic and extreme, this anxious, inhibited phenotype is an important early-life risk factor for the development of anxiety disorders, depression and co-morbid substance abuse. Individuals with extreme anxious temperament often show persistent distress in the absence of immediate threat and this contextually inappropriate anxiety predicts future symptom development. Despite its clear clinical relevance, the neural circuitry governing the maladaptive persistence of anxiety remains unclear. Here, we used a well-established nonhuman primate model of childhood temperament and high-resolution 18fluorodeoxyglucose positron emission tomography (FDG-PET) imaging to understand the neural systems governing persistent anxiety and to clarify their relevance to early-life phenotypic risk. We focused on BI, a core component of anxious temperament, because it affords the moment-by-moment temporal resolution needed to assess contextually appropriate and inappropriate anxiety. From a pool of 109 peri-adolescent rhesus monkeys, we formed groups characterized by high or low levels of BI, as indexed by freezing in response to an unfamiliar human intruder’s profile. The high-BI group showed consistently elevated signs of anxiety and wariness across >2 years of assessments. At the time of brain imaging, 1.5 years after initial phenotyping, the high-BI group showed persistently elevated freezing during a 30-min ‘recovery’ period following an encounter with the intruder—more than an order of magnitude greater than the low-BI group—and this was associated with increased metabolism in the bed nucleus of the stria terminalis, a key component of the central extended amygdala. These observations provide a neurobiological framework for understanding the early phenotypic risk to develop anxiety-related psychopathology, for accelerating the development of improved interventions, and for understanding the origins of childhood temperament.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Clauss JA, Blackford JU . Behavioral inhibition and risk for developing social anxiety disorder: a meta-analytic study. J Am Acad Child Adolesc Psychiatry 2012; 51: 1066–1075.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pine DS, Fox NA . Childhood antecedents and risk for adult mental disorders. Annu Rev Psychol 2015; 66: 459–485.

    Article  PubMed  Google Scholar 

  3. Insel TR . Next-generation treatments for mental disorders. Sci Transl Med 2012; 4: 155ps119.

    Article  CAS  Google Scholar 

  4. Kagan J, Reznick JS, Snidman N . Biological bases of childhood shyness. Science 1988; 240: 167–171.

    Article  CAS  PubMed  Google Scholar 

  5. Fox AS, Kalin NH . A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology. Am J Psychiatry 2014; 171: 1162–1173.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fox AS, Shelton SE, Oakes TR, Davidson RJ, Kalin NH . Trait-like brain activity during adolescence predicts anxious temperament in primates. PLoS ONE 2008; 3: e2570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oler JA, Fox AS, Shackman AJ, Kalin NH. The central nucleus of the amygdala is a critical substrate for individual differences in anxiety. In: Amaral DG, Adolphs R (eds). Living Without an Amygdala. Guilford: NY, 2016.

    Google Scholar 

  8. Buss KA, Kiel EJ. Temperamental risk factors for pediatric anxiety disorders. In: Vasa RA, Roy AK (eds). Pediatric Anxiety Disorders: A Clinical Guide. Springer: NY, 2013, pp 47–68.

    Chapter  Google Scholar 

  9. Shackman AJ, Tromp DPM, Stockbridge MD, Kaplan CM, Tillman RM, Fox AS . Dispositional negativity: an integrative psychological and neurobiological perspective. Psychol Bull (in press).

  10. Davidson RJ, Jackson DC, Kalin NH . Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychol Bull 2000; 126: 890–909.

    Article  PubMed  Google Scholar 

  11. Davis M, Walker DL, Miles L, Grillon C . Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 2010; 35: 105–135.

    Article  PubMed  Google Scholar 

  12. Duits P, Cath DC, Lissek S, Hox JJ, Hamm AO, Engelhard IM et al. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depress Anxiety 2015; 239–253.

  13. Grupe DW, Nitschke JB . Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci 2013; 14: 488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barker TV, Reeb-Sutherland BC, Fox NA . Individual differences in fear potentiated startle in behaviorally inhibited children. Dev Psychobiol 2014; 56: 133–141.

    Article  PubMed  Google Scholar 

  15. Reeb-Sutherland BC, Helfinstein SM, Degnan KA, Perez-Edgar K, Henderson HA, Lissek S et al. Startle response in behaviorally inhibited adolescents with a lifetime occurrence of anxiety disorders. J Am Acad Child Adolesc Psychiatry 2009; 48: 610–617.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Waters AM, Nazarian M, Mineka S, Zinbarg RE, Griffith JW, Naliboff B et al. Context and explicit threat cue modulation of the startle reflex: preliminary evidence of distinctions between adolescents with principal fear disorders versus distress disorders. Psychiatry Res 2014; 217: 93–99.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jovanovic T, Nylocks KM, Gamwell KL, Smith A, Davis TA, Norrholm SD et al. Development of fear acquisition and extinction in children: effects of age and anxiety. Neurobiol Learn Mem 2014; 113: 135–142.

    Article  PubMed  Google Scholar 

  18. Reznick JS, Kagan J, Snidman N, Gersten M, Baak K, Rosenberg A . Inhibited and uninhibited children: A follow-up study. Child Dev 1986; 57: 660–680.

    Article  Google Scholar 

  19. Buss KA, Davis EL, Kiel EJ, Brooker RJ, Beekman C, Early MC . Dysregulated fear predicts social wariness and social anxiety symptoms during kindergarten. J Clin Child Adolesc Psychol 2013; 42: 603–616.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grillon C . Associative learning deficits increase symptoms of anxiety in humans. Biol Psychiatry 2002; 51: 851–858.

    Article  PubMed  Google Scholar 

  21. Houben M, Van Den Noortgate W, Kuppens P . The relation between short-term emotion dynamics and psychological well-being: a meta-analysis. Psychol Bull 2015; 141: 901–930.

    Article  PubMed  Google Scholar 

  22. Newman MG, Fisher AJ . Mediated moderation in combined cognitive behavioral therapy versus component treatments for generalized anxiety disorder. J Consult Clin Psychol 2013; 81: 405–414.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van de Leemput IA, Wichers M, Cramer AO, Borsboom D, Tuerlinckx F, Kuppens P et al. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci USA 2014; 111: 87–92.

    Article  CAS  PubMed  Google Scholar 

  24. Shackman AJ, Fox AS . Contributions of the central extended amygdala to fear and anxiety. J Neurosci 36: 8050–8063.

  25. Duvarci S, Bauer EP, Pare D . The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J Neurosci 2009; 29: 10357–10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim SY, Adhikari A, Lee SY, Marshel JH, Kim CK, Mallory CS et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 2013; 496: 219–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Botta P, Demmou L, Kasugai Y, Markovic M, Xu C, Fadok JP et al. Regulating anxiety with extrasynaptic inhibition. Nat Neurosci 2015; 18: 1493–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shackman AJ, Fox AS, Oler JA, Shelton SE, Davidson RJ, Kalin NH . Neural mechanisms underlying heterogeneity in the presentation of anxious temperament. Proc Natl Acad Sci USA 2013; 110: 6145–6150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fox AS, Oler JA, Shackman AJ, Shelton SE, Raveendran M, McKay DR et al. Intergenerational neural mediators of early-life anxious temperament. Proc Natl Acad Sci USA 2015; 112: 9118–9122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox NA, Henderson HA, Marshall PJ, Nichols KE, Ghera MM . Behavioral inhibition: linking biology and behavior within a developmental framework. Annu Rev Psychol 2005; 56: 235–262.

    Article  PubMed  Google Scholar 

  31. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007; 316: 222–234.

    Article  CAS  PubMed  Google Scholar 

  32. Preuss TM. Primate brain evolution in phylogenetic context. In: Kaas JH, Preuss TM (eds). Evolution of Nervous Sytems vol. 4. Elsevier: NY, 2007, pp 3–34.

    Google Scholar 

  33. Fox AS, Oler JA, Tromp DP, Fudge JL, Kalin NH . Extending the amygdala in theories of threat processing. Trends Neurosci 2015; 38: 319–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. deCampo DM, Fudge JL . Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque: comparison with ventral striatal afferents. J Comp Neurol 2013; 521: 3191–3216.

    Article  PubMed  Google Scholar 

  35. Kalin NH, Shelton SE . Defensive behaviors in infant rhesus monkeys: environmental cues and neurochemical regulation. Science 1989; 243: 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  36. Rilling JK, Winslow JT, O'Brien D, Gutman DA, Hoffman JM, Kilts CD . Neural correlates of maternal separation in rhesus monkeys. Biol Psychiatry 2001; 49: 146–157.

    Article  CAS  PubMed  Google Scholar 

  37. Kalin NH, Shelton SE, Fox AS, Rogers J, Oakes TR, Davidson RJ . The serotonin transporter genotype is associated with intermediate brain phenotypes that depend on the context of eliciting stressor. Mol Psychiatry 2008; 13: 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jahn AL, Fox AS, Abercrombie HC, Shelton SE, Oakes TR, Davidson RJ et al. Subgenual prefrontal cortex activity predicts individual differences in hypothalamic-pituitary-adrenal activity across different contexts. Biol Psychiatry 2010; 67: 175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oler JA, Fox AS, Shelton SE, Christian BT, Murali D, Oakes TR et al. Serotonin transporter availability in the amygdala and bed nucleus of the stria terminalis predicts anxious temperament and brain glucose metabolic activity. J Neurosci 2009; 29: 9961–9966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Preacher KJ, Rucker DD, MacCallum RC, Nicewander WA . Use of the extreme groups approach: a critical reexamination and new recommendations. Psychol Methods 2005; 10: 178–192.

    Article  PubMed  Google Scholar 

  41. Kalin NH, Shelton SE, Davidson RJ . Role of the primate orbitofrontal cortex in mediating anxious temperament. Biol Psychiatry 2007; 62: 1134–1139.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kalin NH, Shelton SE, Davidson RJ . The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 2004; 24: 5506–5515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chronis-Tuscano A, Degnan KA, Pine DS, Perez-Edgar K, Henderson HA, Diaz Y et al. Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. J Am Acad Child Adolesc Psychiatry 2009; 48: 928–935.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nichols T, Brett M, Andersson J, Wager T, Poline JB . Valid conjunction inference with the minimum statistic. Neuroimage 2005; 25: 653–660.

    Article  PubMed  Google Scholar 

  45. Birn RM, Shackman AJ, Oler JA, Williams LE, McFarlin DR, Rogers GM et al. Evolutionarily‐conserved dysfunction of prefrontal‐amygdalar connectivity in early‐life anxiety. Mol Psychiatry 2014; 19: 915–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis M, Whalen PJ . The amygdala: vigilance and emotion. Mol Psychiatry 2001; 6: 13–34.

    Article  CAS  PubMed  Google Scholar 

  47. Walker DL, Davis M . Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 2008; 213: 29–42.

    Article  PubMed  Google Scholar 

  48. Nagy FZ, Pare D . Timing of impulses from the central amygdala and bed nucleus of the stria terminalis to the brain stem. J Neurophysiol 2008; 100: 3429–3436.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Somerville LH, Whalen PJ, Kelley WM . Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol Psychiatry 2010; 68: 416–424.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Straube T, Mentzel HJ, Miltner WHR . Waiting for spiders: Brain activation during anticipatory anxiety in spider phobics. Neuroimage 2007; 37: 1427–1436.

    Article  PubMed  Google Scholar 

  51. Yassa MA, Hazlett RL, Stark CE, Hoehn-Saric R . Functional MRI of the amygdala and bed nucleus of the stria terminalis during conditions of uncertainty in generalized anxiety disorder. J Psychiatr Res 2012; 46: 1045–1052.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Munsterkotter AL, Notzon S, Redlich R, Grotegerd D, Dohm K, Arolt V et al. Spider or no spider? Neural correlates of sustained and phasic fear in spider phobia. Depress Anxiety 2015; 32: 656–663 (in press).

    Article  PubMed  Google Scholar 

  53. Kalin NH, Shelton SE, Fox AS, Oakes TR, Davidson RJ . Brain regions associated with the expression and contextual regulation of anxiety in primates. Biol Psychiatry 2005; 58: 796–804.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Somerville LH, Wagner DD, Wig GS, Moran JM, Whalen PJ, Kelley WM . Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cereb Cortex 2013; 23: 49–60.

    Article  PubMed  Google Scholar 

  55. McMenamin BW, Langeslag SJ, Sirbu M, Padmala S, Pessoa L . Network organization unfolds over time during periods of anxious anticipation. J Neurosci 2014; 34: 11261–11273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alvarez RP, Kirlic N, Misaki M, Bodurka J, Rhudy JL, Paulus MP et al. Increased anterior insula activity in anxious individuals is linked to diminished perceived control. Transl Psychiatry 2015; 5: e591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buss KA . Which fearful toddlers should we worry about? Context, fear regulation, and anxiety risk. Dev Psychol 2011; 47: 804–819.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wolitzky-Taylor K, Vrshek-Schallhorn S, Waters AM, Mineka S, Zinbarg R, Ornitz E et al. Adversity in early and mid-adolescence is associated with elevated startle responses to safety cues in late adolescence. Clin Psychol Sci 2014; 2: 202–213.

    Article  PubMed  Google Scholar 

  59. Craske MG, Wolitzky-Taylor KB, Mineka S, Zinbarg R, Waters AM, Vrshek-Schallhorn S et al. Elevated responding to safe conditions as a specific risk factor for anxiety versus depressive disorders: evidence from a longitudinal investigation. J Abnorm Psychol 2012; 121: 315–324.

    Article  PubMed  Google Scholar 

  60. Lenaert B, Boddez Y, Griffith JW, Vervliet B, Schruers K, Hermans D . Aversive learning and generalization predict subclinical levels of anxiety: a six-month longitudinal study. J Anxiety Disord 2014; 28: 747–753.

    Article  PubMed  Google Scholar 

  61. LeDoux JE . Anxious: Using the Brain to Understand and Treat Fear and Anxiety. Viking: NY, 2015.

    Google Scholar 

  62. Mobbs D, Yu R, Rowe JB, Eich H, FeldmanHall O, Dalgleish T . Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc Natl Acad Sci USA 2010; 107: 20582–20586.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grupe DW, Oathes DJ, Nitschke JB . Dissecting the anticipation of aversion reveals dissociable neural networks. Cereb Cortex 2013; 23: 1874–1883.

    Article  PubMed  Google Scholar 

  64. Choi JM, Padmala S, Pessoa L . Impact of state anxiety on the interaction between threat monitoring and cognition. Neuroimage 2012; 59: 1912–1923.

    Article  PubMed  Google Scholar 

  65. Klumpers F, Kroes MC, Heitland I, Everaerd D, Akkermans SE, Oosting RS et al. Dorsomedial prefrontal cortex mediates the impact of serotonin transporter linked polymorphic region genotype on anticipatory threat reactions. Biol Psychiatry 2015; 78: 582–589.

    Article  CAS  PubMed  Google Scholar 

  66. Fox AS, Shelton SE, Oakes TR, Converse AK, Davidson RJ, Kalin NH . Orbitofrontal cortex lesions alter anxiety-related activity in the primate bed nucleus of stria terminalis. J Neurosci 2010; 30: 7023–7027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ . The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 2011; 12: 154–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mobbs D, Hagan CC, Dalgleish T, Silston B, Prevost C . The ecology of human fear: survival optimization and the nervous system. Front Neurosci 2015; 9: 55.

    Article  PubMed  PubMed Central  Google Scholar 

  69. McLean CP, Asnaani A, Litz BT, Hofmann SG . Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res 2011; 45: 1027–1035.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gater R, Tansella M, Korten A, Tiemens BG, Mavreas VG, Olatawura MO . Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the World Health Organization Collaborative Study on Psychological Problems in General Health Care. Arch Gen Psychiatry 1998; 55: 405–413.

    Article  CAS  PubMed  Google Scholar 

  71. Avery SN, Clauss JA, Blackford JU . The human BNST: Functional role in anxiety and addiction. Neuropsychopharmacology 2016; 41: 126–141.

    Article  CAS  PubMed  Google Scholar 

  72. Mai JK, Paxinos G, Voss T . Atlas of the Human Brain, 3rd edn. Academic Press: San Diego, CA, 2007.

    Google Scholar 

  73. Paxinos G, Huang X, Petrides M, Toga A . The Rhesus Monkey Brain in Stereotaxic Coordinates 2nd edn. Academic Press: San Diego, 2009.

    Google Scholar 

  74. Avery SN, Clauss JA, Winder DG, Woodward N, Heckers S, Blackford JU . BNST neurocircuitry in humans. Neuroimage 2014; 91: 311–323.

    Article  PubMed  Google Scholar 

  75. Torrisi S, O'Connell K, Davis A, Reynolds R, Balderston N, Fudge JL et al. Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum Brain Mapp 2015; 36: 4076–4088.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009; 46: 786–802.

    Article  PubMed  Google Scholar 

  77. Caspi A, Roberts BW, Shiner RL . Personality development: stability and change. Annu Rev Psychol 2005; 56: 453–484.

    Article  PubMed  Google Scholar 

  78. Gross JJ, Sutton SK, Ketelaar T . Relations between affect and personality: support for the affect-level and affective reactivity views. Pers Soc Psychol Bull 1998; 24: 279–288.

    Article  Google Scholar 

  79. Suls J, Martin R . The daily life of the garden-variety neurotic: reactivity, stressor exposure, mood spillover, and maladaptive coping. J Pers 2005; 73: 1485–1509.

    Article  PubMed  Google Scholar 

  80. Bolger N, Schilling EA . Personality and the problems of everyday life: the role of neuroticism in exposure and reactivity to daily stressors. J Pers 1991; 59: 355–386.

    Article  CAS  PubMed  Google Scholar 

  81. Luck SJ. Ten simple rules for designing ERP experiments. In: Handy TC (ed). Event-Related Potentials: A Methods Handbook. MIT Press: Cambridge, MA, 2005, pp 17–32.

    Google Scholar 

  82. Shackman AJ, Sarinopoulos I, Maxwell JS, Pizzagalli DA, Lavric A, Davidson RJ . Anxiety selectively disrupts visuospatial working memory. Emotion 2006; 6: 40–61.

    Article  PubMed  Google Scholar 

  83. Crapse TB, Sommer MA . Corollary discharge across the animal kingdom. Nat Rev Neurosci 2008; 9: 587–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maren S, Phan KL, Liberzon I . The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 2013; 14: 417–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge assistance and critical feedback from A Alexander, A Converse, L Friedman, D Grupe, R Hoks, T Johnson, S Mansavage, K Meyer, L Pessoa, D Pine, P Rudebeck, W Shelledy, M Stockbridge, T Johnstone, E Zao and the staffs of the Harlow Center for Biological Psychology, HealthEmotions Research Institute (HERI), and Wisconsin National Primate Center. We are particularly grateful for the contributions of Helen Van Valkenberg to this work. This work was supported by the National Institutes of Health (DA040717, HD003352, HD008352, MH018931, MH046729, MH069315, MH081884, MH084051, MH091550, MH107444, OD011106 and RR000167), HERI, Meriter Hospital and University of Maryland.

Author contributions

NHK and SES designed the study. RJD provided theoretical guidance. SES collected data. ASF processed data. AJS, ASF, TRO and NHK analyzed data. ASF and TRO developed analytical tools. AJS, ASF, NHK, JAO and RJD contributed to data interpretation. AJS, ASF and NHK wrote the paper. AJS and ASF created figures and tables. NHK supervised the study. All authors reviewed and revised the paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N H Kalin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shackman, A., Fox, A., Oler, J. et al. Heightened extended amygdala metabolism following threat characterizes the early phenotypic risk to develop anxiety-related psychopathology. Mol Psychiatry 22, 724–732 (2017). https://doi.org/10.1038/mp.2016.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.132

This article is cited by

Search

Quick links