Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder

Abstract

There is ample evidence that glucose metabolism in the pregenual anterior cingulate cortex (PACC) is increased in major depressive disorder (MDD), whereas it is still unknown whether glucose levels per se are also elevated. Elevated cerebrospinal fluid (CSF) lactate concentrations in MDD patients might indicate that increased glycolytical metabolization of glucose to lactate in astrocytes either alone or in conjunction with mitochondrial dysfunction results in an accumulation of lactate and contributes to pathophysiological mechanisms of MDD. However, until now, no study investigated in vivo PACC glucose and lactate levels in MDD. Proton magnetic resonance spectroscopy was therefore used to test the hypothesis that patients with MDD have increased PACC glucose and lactate levels. In 40 healthy and depressed participants, spectra were acquired from the PACC using a maximum echo J-resolved spectroscopy protocol. Results show significant increases of glucose and lactate in patients, which are also associated with depression severity. These findings indicate impaired brain energy metabolism in MDD with increased fraction of energy utilization via glycolysis and reduced mitochondrial oxidative clearance of lactate. Targeting these metabolic disturbances might affect the balance of metabolic pathways regulating neuronal energetics and result in an attenuation of the elevated basal activity of brain regions within the neural circuitry of depression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS et al. Grand challenges in global mental health. Nature 2011; 475: 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pizzagalli DA . Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 2011; 36: 183–206.

    Article  PubMed  Google Scholar 

  3. Milak MS, Parsey RV, Keilp J, Oquendo MA, Malone KM, Mann J . Neuroanatomic correlates of psychopathologic components of major depressive disorder. Arch Gen Psychiatry 2005; 62: 397–408.

    Article  PubMed  Google Scholar 

  4. Ballard ED, Lally N, Nugent AC, Furey ML, Luckenbaugh DA, Zarate CA . Neural correlates of suicidal ideation and its reduction in depression. Int J Neuropsychopharmacol 2015; 18.

  5. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999; 156: 675–682.

    CAS  PubMed  Google Scholar 

  6. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WE . Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 1992; 149: 538–543.

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy SH, Evans KR, Krüger S, Mayberg HS, Meyer JH, McCann S et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 2001; 158: 899–905.

    Article  CAS  PubMed  Google Scholar 

  8. Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell CC, Sackeim HA et al. Decreased regional brain metabolism after ECT. Am J Psychiatry 2001; 158: 305–308.

    Article  CAS  PubMed  Google Scholar 

  9. Drevets WC, Bogers W, Raichle ME . Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 2002; 12: 527–544.

    Article  CAS  PubMed  Google Scholar 

  10. Brody AL, Saxena S, Stoessel P, Gillies LA, Fairbanks LA, Alborzian S et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry 2001; 58: 631–640.

    Article  CAS  PubMed  Google Scholar 

  11. Konarski JZ, Kennedy SH, Segal ZV, Lau MA, Bieling PJ, McIntyre RS et al. Predictors of nonresponse to cognitive behavioural therapy or venlafaxine using glucose metabolism in major depressive disorder. J Psychiatry Neurosci 2009; 34: 175–180.

    PubMed  PubMed Central  Google Scholar 

  12. Sacher J, Neumann J, Fünfstück T, Soliman A, Villringer A, Schroeter ML . Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord 2012; 140: 142–148.

    Article  PubMed  Google Scholar 

  13. Allaman I, Fiumelli H, Magistretti PJ, Martin J-L . Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology (Berl.) 2011; 216: 75–84.

    Article  CAS  Google Scholar 

  14. Rajkowska G, Stockmeier CA . Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013; 14: 1225–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanacora G, Banasr M . From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 2013; 73: 1172–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C . Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008; 322: 1551–1555.

    Article  CAS  PubMed  Google Scholar 

  17. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007; 55: 1251–1262.

    Article  PubMed  Google Scholar 

  18. Magistretti PJ . The importance of a physiological approach to neuroscience. Nihon Seirigaku Zasshi 2008; 70: 6.

    PubMed  Google Scholar 

  19. Hu Y, Wilson GS . A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 1997; 69: 1484–1490.

    Article  CAS  PubMed  Google Scholar 

  20. Raichle ME, Mintun MA . Brain work and brain imaging. Annu Rev Neurosci 2006; 29: 449–476.

    Article  CAS  PubMed  Google Scholar 

  21. Maddock RJ, Buonocore MH, Lavoie SP, Copeland LE, Kile SJ, Richards AL et al. Brain lactate responses during visual stimulation in fasting and hyperglycemic subjects: a proton magnetic resonance spectroscopy study at 1.5 Tesla. Psychiatry Res 2006; 148: 47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maddock RJ, Buonocore MH, Copeland LE, Richards AL . Elevated brain lactate responses to neural activation in panic disorder: a dynamic 1H-MRS study. Mol Psychiatry 2009; 14: 537–545.

    Article  CAS  PubMed  Google Scholar 

  23. Mangia S, Tkac I, Gruetter R, Van De Moortele PF, Maraviglia B, Ugurbil K . Sustained neuronal activation raises oxidative metabolism to a new steady state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cerebr Blood Flow Metab 2007; 27: 1055–1063.

    Article  CAS  Google Scholar 

  24. Schmiedel J, Jackson S, Schäfer J, Reichmann H . Mitochondrial cytopathies. J Neurol 2003; 250: 267–277.

    Article  CAS  PubMed  Google Scholar 

  25. Bianchi MC, Sgandurra G, Tosetti M, Battini R, Cioni G . Brain magnetic resonance in the diagnostic evaluation of mitochondrial encephalopathies. Biosci Rep 2007; 27: 69–85.

    Article  CAS  PubMed  Google Scholar 

  26. Fattal O, Link J, Quinn K, Cohen BH, Franco K . Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr 2007; 12: 429–438.

    Article  PubMed  Google Scholar 

  27. Gardner A, Boles RG . Comment on treatment of psychiatric illness in patients with mitochondrial disease. Psychosomatics 2011; 52: 497–498.

    Article  PubMed  Google Scholar 

  28. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2012; 13: 293–307.

    Article  CAS  PubMed  Google Scholar 

  29. Klinedinst NJ, Regenold WT . A mitochondrial bioenergetic basis of depression. J Bioenerg Biomembr 2015; 47: 155–171.

    Article  CAS  PubMed  Google Scholar 

  30. Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 2011; 16: 193–201.

    Article  CAS  PubMed  Google Scholar 

  31. Carlson PJ, Singh JB, Zarate CA, Drevets WC, Manji HK . Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRX 2012; 3: 22–41.

    Article  Google Scholar 

  32. Abdallah CG, Niciu MJ, Fenton LR, Fasula MK, Jiang L, Black A et al. Decreased occipital cortical glutamate levels in response to successful cognitive-behavioral therapy and pharmacotherapy for major depressive disorder. Psychother Psychosom 2014; 83: 298–307.

    Article  PubMed  Google Scholar 

  33. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA . Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry 2009; 65: 489–494.

    Article  CAS  PubMed  Google Scholar 

  34. Murrough JW, Mao X, Collins KA, Kelly C, Andrade G, Nestadt P et al Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder NMR Biomed 2010; 23: 643–650.

    Article  CAS  PubMed  Google Scholar 

  35. Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed 2012; 25: 1073–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 2004; 61: 450–458.

    Article  CAS  PubMed  Google Scholar 

  37. Maddock RJ, Buonocore MH . MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci 2012; 11: 199–251.

    Article  PubMed  Google Scholar 

  38. Schulte RF, Lange T, Beck J, Meier D, Boesiger P . Improved two-dimensional J-resolved spectroscopy. NMR Biomed 2006; 19: 264–270.

    Article  CAS  PubMed  Google Scholar 

  39. Hock A, Fuchs A, Boesiger P, Kollias SS, Henning A . Electrocardiogram-triggered, higher order, projection-based Bo shimming allows for fast and reproducible shim convergence in spinal cord ¹H MRS. NMR Biomed 2013; 26: 329–335.

    Article  CAS  PubMed  Google Scholar 

  40. Tkac I, Starcuk Z, Choi IY, Gruetter R . In vivo1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 1999; 41: 649–659.

    Article  CAS  PubMed  Google Scholar 

  41. Henning A, Fuchs A, Murdoch JB, Boesiger P . Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss. NMR Biomed 2009; 22: 683–696.

    Article  CAS  PubMed  Google Scholar 

  42. Fuchs A, Boesiger P, Schulte RF, Henning A . ProFit revisited. Magn Reson Med 2014; 71: 458–468.

    Article  PubMed  Google Scholar 

  43. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 2006; 55: 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  44. Zoelch N, Hock A, Henning A . Necessity of tissue volume composition correction for internal referencing. 31th Annual Scientific Meeting ESMRMB October 2015, Edinburgh, UK.

  45. Kreis R, Ernst T, Ross BD . Absolute quantification of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson Ser B 1992; 102: 9–19.

    Article  Google Scholar 

  46. Mlynárik V, Gruber S, Moser E . Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 2001; 14: 325–331.

    Article  PubMed  Google Scholar 

  47. Wyss PO, Hock A, Scheidegger M, Zoelch N, Rudin M, Kollias S et al. About differences of the transverse relaxation time (T2) of 18 brain metabolites in gray and white matter at 3 T. 24th Annual Scientific Meeting ISMRM 2016, Singapore.

  48. Kreis R . The trouble with quality filtering based on relative Cramér–Rao lower bounds. Magn Reson Med 2015; 75: 15–18.

    Article  PubMed  Google Scholar 

  49. Jacob RJ, Fan X, Evans ML, Dziura J, Sherwin RS . Brain glucose levels are elevated in chronically hyperglycemic diabetic rats: no evidence for protective adaptation by the blood brain barrier. Metabolism 2002; 51: 1522–1524.

    Article  CAS  PubMed  Google Scholar 

  50. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL . A default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 2009; 106: 1942–1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 2009; 34: 932–943.

    Article  PubMed  Google Scholar 

  53. Mangia S, Garreffa G, Bianciardi M, Giove F, Di Salle F, Maraviglia B . The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 2003; 118: 7–10.

    Article  CAS  PubMed  Google Scholar 

  54. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW . Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 2004; 305: 99–103.

    Article  CAS  PubMed  Google Scholar 

  55. Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 2010; 67: 584–587.

    Article  CAS  PubMed  Google Scholar 

  56. Bednařík P, Tkáč I, Giove F, DiNuzzo M, Deelchand DK, Emir UE et al. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla. J Cereb Blood Flow Metab 2015; 35: 601–610.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dager SR, Strauss WL, Marro KI, Richards TL, Metzger GD, Artru AA . Proton magnetic resonance spectroscopy investigation of hyperventilation in subjects with panic disorder and comparison subjects. Am J Psychiatry 1995; 152: 666–672.

    Article  CAS  PubMed  Google Scholar 

  58. Dager SR, Friedman SD, Heide A, Layton ME, Richards T, Artru A et al. Two-dimensional proton echo-planar spectroscopic imaging of brain metabolic changes during lactate-induced panic. Arch Gen Psychiatry 1999; 56: 70–77.

    Article  CAS  PubMed  Google Scholar 

  59. Maddock RJ . The lactic acid response to alkalosis in panic disorder : an integrative review. J Neuropsychiatry Clin Neurosci 2001; 13: 22–34.

    Article  CAS  PubMed  Google Scholar 

  60. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL . Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 2009; 34: 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  61. Scaini G, Simon KR, Tonin AM, Busanello ENB, Moura AP, Ferreira GC et al. Toxicity of octanoate and decanoate in rat peripheral tissues: evidence of bioenergetic dysfunction and oxidative damage induction in liver and skeletal muscle. Mol Cell Biochem 2012; 361: 329–335.

    Article  CAS  PubMed  Google Scholar 

  62. Roitman S, Green T, Osher Y, Karni N, Levine J . Creatine monohydrate in resistant depression: a preliminary study. Bipolar Disord 2007; 9: 754–758.

    Article  CAS  PubMed  Google Scholar 

  63. Kondo DG, Sung Y-H, Hellem TL, Fiedler KK, Shi X, Jeong E-K et al. Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: a 31-phosphorus magnetic resonance spectroscopy study. J Affect Disord 2011; 135: 354–361.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lyoo IK, Yoon S, Kim T-S, Hwang J, Kim JE, Won W et al. A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. Am J Psychiatry 2012; 169: 937–945.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fava M, Targum SD, Nierenberg AA, Bleicher LS, Carter TA, Wedel PC et al. An exploratory study of combination buspirone and melatonin SR in major depressive disorder (MDD): a possible role for neurogenesis in drug discovery. J Psychiatric Res 2012; 46: 1553–1563.

    Article  Google Scholar 

  66. Hroudová J, Fišar Z, Kitzlerová E, Zvěřová M, Raboch J . Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 2013; 13: 795–800.

    Article  PubMed  Google Scholar 

  67. Karabatsiakis A, Böck C, Salinas-Manrique J, Kolassa S, Calzia E, Dietrich DE et al. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry 2014; 4: e397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mattson MP, Gleichmann M, Cheng A . Mitochondria in neuroplasticity and neurological disorders. Neuron 2008; 60: 748–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng A, Hou Y, Mattson MP . Mitochondria and neuroplasticity. ASN Neuro 2010; 2: e00045.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Knapp LT, Klann E . Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J. Neurosci. J Neurosci Res 2002; 70: 1–7.

    Article  CAS  PubMed  Google Scholar 

  71. Sprague AH, Khalil RA . Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78: 539–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Behr GA, Moreira JCF, Frey BN, Behr GA, Moreira JCF, Frey BN . Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxid Med Cell Longev 2012; 2012: 609421.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Irie M, Miyata M, Kasai H . Depression and possible cancer risk due to oxidative DNA damage. J Psychiatr Res 2005; 39: 553–560.

    Article  PubMed  Google Scholar 

  74. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S . Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 2007; 22: 67–73.

    Article  CAS  PubMed  Google Scholar 

  75. Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G . Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res 2012; 46: 95–104.

    Article  CAS  PubMed  Google Scholar 

  76. Wilson JE . Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 2003; 206: 2049–2057.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support by Ioannis Giapitzakis with the data analysis as well as the participation of all volunteers in the current study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Grimm.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ernst, J., Hock, A., Henning, A. et al. Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Mol Psychiatry 22, 113–119 (2017). https://doi.org/10.1038/mp.2016.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.73

This article is cited by

Search

Quick links