Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polygenic associations of neurodevelopmental genes in suicide attempt

Abstract

The risk for suicidal behavior (SB) is elevated in schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD), but also occurs in subjects without psychiatric diagnoses. Genome-wide association studies (GWAS) on SB may help to understand this risk, but have been hampered by low power due to limited sample sizes, weakly ascertained SB or a reliance on single-nucleotide protein (SNP)-by-SNP analyses. Here, we tried to mitigate such issues with polygenic risk score (PRS) association tests combined with hypothesis-driven strategies using a family-based sample of 660 trios with a well-ascertained suicide attempt (SA) outcome in the offspring (Genetic Investigation of Suicide and SA, GISS). Two complementary sources of PRS information were used. First, a PRS that was discovered and validated in the GISS SA revealed the polygenic association of SNPs in 750 neurodevelopmental genes, which was driven by the SA phenotype, rather than the major psychiatric diagnoses. Second, a PRS based on three different genome-wide association studies (on SCZ, BPD or MDD) from the Psychiatric Genomics Consortium (PGC) showed an association of the PGC-SCZ PRS in the SA subjects with and without major psychiatric diagnoses. We characterized the PGC-SCZ overlap in the SA subjects without diagnoses. The extended major histocompatibility complex region did not contribute to the overlap, but we delineated the genic overlap to neurodevelopmental genes that partially overlapped with those identified by the GISS PRS. Among the 590 SA polygenes implicated here, there were several developmentally important functions (cell adhesion/migration, small GTPase and receptor tyrosine kinase signaling), and 16 of the SA polygenes have previously been studied in SB (BDNF, CDH10, CDH12, CDH13, CDH9, CREB1, DLK1, DLK2, EFEMP1, FOXN3, IL2, LSAMP, NCAM1, nerve growth factor (NGF), NTRK2 and TBC1D1). These novel genome-wide insights, supported by two lines of evidence, suggested the importance of a polygenic neurodevelopmental etiology in SB, even in the absence of major psychiatric diagnoses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Brent DA, Melhem N . Familial transmission of suicidal behavior. Psychiat Clin North Am 2008; 31: 157.

    Article  Google Scholar 

  2. Voracek M, Loibl LM . Genetics of suicide: a systematic review of twin studies. Wien Klin Wochenschr 2007; 119: 463–475.

    Article  CAS  PubMed  Google Scholar 

  3. Wasserman D, Rihmer Z, Rujescu D, Sarchiapone M, Sokolowski M, Titelman D et al. The European Psychiatric Association (EPA) guidance on suicide treatment and prevention. Eur Psychiatry 2012; 27: 129–141.

    Article  CAS  PubMed  Google Scholar 

  4. Hoertel N, Franco S, Wall MM, Oquendo MA, Kerridge BT, Limosin F et al. Mental disorders and risk of suicide attempt: a national prospective study. Mol Psychiatry 2015; 20: 718–726.

    Article  CAS  PubMed  Google Scholar 

  5. Oquendo MA, Sullivan GM, Sudol K, Baca-Garcia E, Stanley BH, Sublette ME et al. Toward a biosignature for suicide. Am J Psychiatry 2014; 171: 1259–1277.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schild AH, Pietschnig J, Tran US, Voracek M . Genetic association studies between SNPs and suicidal behavior: a meta-analytical field synopsis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46: 36–42.

    Article  CAS  PubMed  Google Scholar 

  7. Sokolowski M, Wasserman J, Wasserman D . An overview of the neurobiology of suicidal behaviors as one meta-system. Mol Psychiatry 2015; 20: 56–71.

    Article  CAS  PubMed  Google Scholar 

  8. Sokolowski M, Wasserman J, Wasserman D . Genome-wide association studies of suicidal behaviors: a review. Eur Neuropsychopharmacol 2014; 24: 1567–1577.

    Article  CAS  PubMed  Google Scholar 

  9. Mullins N, Perroud N, Uher R, Butler AW, Cohen-Woods S, Rivera M et al. Genetic relationships between suicide attempts, suicidal ideation and major psychiatric disorders: a genome-wide association and polygenic scoring study. Am J Med Genet B Neuropsychiatr Genet 2014; 165B: 428–437.

    Article  PubMed  Google Scholar 

  10. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  Google Scholar 

  11. Galfalvy H, Zalsman G, Huang YY, Murphy L, Rosoklija G, Dwork AJ et al. A pilot genome wide association and gene expression array study of suicide with and without major depression. World J Biol Psychiatry 2013; 14: 574–582.

    Article  PubMed  Google Scholar 

  12. Perlis RH, Huang J, Purcell S, Fava M, Rush AJ, Sullivan PF et al. Genome-wide association study of suicide attempts in mood disorder patients. Am J Psychiatry 2010; 167: 1499–1507.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schosser A, Butler AW, Ising M, Perroud N, Uher R, Ng MY et al. Genomewide association scan of suicidal thoughts and behaviour in major depression. PLoS One 2011; 6: e20690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willour VL, Seifuddin F, Mahon PB, Jancic D, Pirooznia M, Steele J et al. A genome-wide association study of attempted suicide. Mol Psychiatry 2012; 17: 433–444.

    Article  CAS  PubMed  Google Scholar 

  15. Galfalvy H, Haghighi F, Hodgkinson C, Goldman D, Oquendo MA, Burke A et al. A genome-wide association study of suicidal behavior. Am J Med Genet B Neuropsychiatr Genet 2015; 168: 557–563.

    Article  CAS  PubMed  Google Scholar 

  16. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  17. Dudbridge F . Power and predictive accuracy of polygenic risk scores. PLoS Genet 2013; 9: e1003348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  Google Scholar 

  19. Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet 2013; 9: e1003449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manchia M, Cullis J, Turecki G, Rouleau GA, Uher R, Alda M . The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases. PLoS One 2013; 8: e76295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galfalvy H, Zalsman G, Huang YY, Murphy L, Rosoklija G, Dwork AJ et al. A pilot genome wide association and gene expression array study of suicide with and without major depression. World J Biol Psychiatry 2011; 4: 574–582.

    Google Scholar 

  22. Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M . Gene-environment interactions between CRHR1 variants and physical assault in suicide attempts. Genes Brain Behav 2011; 10: 663–672.

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M . Family-based study of AVPR1B association and interaction with stressful life events on depression and anxiety in suicide attempts. Neuropsychopharmacology 2013; 38: 1504–1511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M . Family-based study of HTR2A in suicide attempts: observed gene, gene x environment and parent-of-origin associations. Mol Psychiatry 2013; 18: 758–766.

    Article  CAS  PubMed  Google Scholar 

  25. Sokolowski M, Ben-Efraim YJ, Wasserman J, Wasserman D . Glutamatergic GRIN2B and polyaminergic ODC1 genes in suicide attempts: associations and gene-environment interactions with childhood/adolescent physical assault. Mol Psychiatry 2013; 18: 985–992.

    Article  CAS  PubMed  Google Scholar 

  26. Sokolowski M, Wasserman J, Wasserman D . Association of polymorphisms in the SLIT2 axonal guidance gene with anger in suicide attempters. Mol Psychiatry 2010; 15: 10–11.

    Article  CAS  PubMed  Google Scholar 

  27. Wasserman D, Geijer T, Rozanov V, Wasserman J . Suicide attempt and basic mechanisms in neural conduction: relationships to the SCN8A and VAMP4 genes. Am J Med Genet B Neuropsychiatr Genet 2005; 133B: 116–119.

    Article  CAS  PubMed  Google Scholar 

  28. Wasserman D, Geijer T, Sokolowski M, Frisch A, Michaelovsky E, Weizman A et al. Association of the serotonin transporter promotor polymorphism with suicide attempters with a high medical damage. Eur Neuropsychopharmacol 2007; 17: 230–233.

    Article  CAS  PubMed  Google Scholar 

  29. Wasserman D, Geijer T, Sokolowski M, Rozanov V, Wasserman J . The serotonin 1A receptor C(-1019)G polymorphism in relation to suicide attempt. Behav Brain Funct 2006; 2: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wasserman D, Geijer T, Sokolowski M, Rozanov V, Wasserman J . Genetic variation in the hypothalamic-pituitary-adrenocortical axis regulatory factor, T-box 19, and the angry/hostility personality trait. Genes Brain Behav 2007; 6: 321–328.

    Article  CAS  PubMed  Google Scholar 

  31. Wasserman D, Sokolowski M, Rozanov V, Wasserman J . The CRHR1 gene: a marker for suicidality in depressed males exposed to low stress. Genes Brain Behav 2008; 7: 14–19.

    CAS  PubMed  Google Scholar 

  32. Beck AT, Beck R, Kovacs M . Classification of suicidal behaviors: I. Quantifying intent and medical lethality. Am J Psychiatry 1975; 132: 285–287.

    Article  CAS  PubMed  Google Scholar 

  33. Psychiatric GCBDWG. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  Google Scholar 

  34. Major Depressive Disorder Working Group of the Psychiatric GC, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013; 18: 497–511.

    Article  Google Scholar 

  35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barrett JC . Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009; 2009, pdb ip71.

  37. Li MX, Yeung JM, Cherny SS, Sham PC . Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 2012; 131: 747–756.

    Article  CAS  PubMed  Google Scholar 

  38. International Schizophrenia C International Schizophrenia C Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    Google Scholar 

  39. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  40. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 2011; 7: e1001273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hargreaves A, Anney R, O'Dushlaine C, Nicodemus KK et alSchizophrenia Psychiatric Genome-Wide Association Study C, Wellcome Trust Case Control C. The one and the many: effects of the cell adhesion molecule pathway on neuropsychological function in psychosis. Psychological medicine 2013; 1–11.

  42. Nicodemus KK, Hargreaves A, Morris D, Anney R, Gill M, Corvin A et al. Variability in working memory performance explained by epistasis vs polygenic scores in the ZNF804A pathway. JAMA Psychiatry 2014; 71: 778–785.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Slattery ML, Lundgreen A . The influence of the CHIEF pathway on colorectal cancer-specific mortality. PLoS One 2014; 9: e116169.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hirano S, Takeichi M . Cadherins in brain morphogenesis and wiring. Physiol Rev 2012; 92: 597–634.

    Article  CAS  PubMed  Google Scholar 

  45. Zuko A, Kleijer KT, Oguro-Ando A, Kas MJ, van Daalen E, van der Zwaag B et al. Contactins in the neurobiology of autism. Eur J Pharmacol 2013; 719: 63–74.

    Article  CAS  PubMed  Google Scholar 

  46. Annenkov A . Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2014; 49: 440–471.

    Article  CAS  PubMed  Google Scholar 

  47. Xing L, Li X, Snider WD . Neurodevelopment. ‘RASopathic’ astrocytes constrain neural plasticity. Science 2015; 348: 636–637.

    Article  CAS  PubMed  Google Scholar 

  48. Stankiewicz TR, Linseman DA . Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 2014; 8: 314.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gottschall PE, Howell MD . ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol 2015; 44-46: 70–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cardenas A, Kong M, Alvarez A, Maldonado H, Leyton L . Signaling pathways involved in neuron-astrocyte adhesion and migration. Curr Mol Med 2014; 14: 275–290.

    Article  CAS  PubMed  Google Scholar 

  51. Lamprianou S, Harroch S . Receptor protein tyrosine phosphatase from stem cells to mature glial cells of the central nervous system. J Mol Neurosci 2006; 29: 241–255.

    Article  CAS  PubMed  Google Scholar 

  52. Le-Niculescu H, Levey DF, Ayalew M, Palmer L, Gavrin LM, Jain N et al. Discovery and validation of blood biomarkers for suicidality. Mol Psychiatry 2013; 18: 1249–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhurov V, Stead JD, Merali Z, Palkovits M, Faludi G, Schild-Poulter C et al. Molecular pathway reconstruction and analysis of disturbed gene expression in depressed individuals who died by suicide. PLoS One 2012; 7: e47581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gross JA, Bureau A, Croteau J, Galfalvy H, Oquendo MA, Haghighi F et al. A genome-wide copy number variant study of suicidal behavior. PLoS One 2015; 10: e0128369.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA et al. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry 2011; 168: 1266–1277.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qin P, Agerbo E, Westergard-Nielsen N, Eriksson T, Mortensen PB . Gender differences in risk factors for suicide in Denmark. Br J Psychiatry 2000; 177: 546–550.

    Article  CAS  PubMed  Google Scholar 

  57. Turecki G, Ernst C, Jollant F, Labonte B, Mechawar N . The neurodevelopmental origins of suicidal behavior. Trends Neurosci 2012; 35: 14–23.

    Article  CAS  PubMed  Google Scholar 

  58. Lehner B . Genotype to phenotype: lessons from model organisms for human genetics. Nat Rev Genet 2013; 14: 168–178.

    Article  CAS  PubMed  Google Scholar 

  59. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank all interviewers at the Human Ecological Health organization/Odessa National Mechnikov University, Odessa, Ukraine; Vsevolod Rozanov for coordinating sample collection in Ukraine; Vladymyr Bogatov and laboratory technician Lars Holmberg for technical assistance; Tatyana Reytarova for logistical assistance; and all those who have given their consent to participate as research subjects in this study. We thank the SNP&SEQ Technology Platform at Uppsala University for their excellent quality of services and expertize in the genotyping conducted here. This GISS study was funded by the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sokolowski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolowski, M., Wasserman, J. & Wasserman, D. Polygenic associations of neurodevelopmental genes in suicide attempt. Mol Psychiatry 21, 1381–1390 (2016). https://doi.org/10.1038/mp.2015.187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.187

This article is cited by

Search

Quick links