Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Increased female autosomal burden of rare copy number variants in human populations and in autism families

Subjects

Abstract

Autosomal genetic variation is presumed equivalent in males and females and makes a major contribution to disease risk. We set out to identify whether maternal copy number variants (CNVs) contribute to autism spectrum disorders (ASDs). Surprisingly, we observed a higher autosomal burden of large, rare CNVs in females in the population, reflected in, but not unique to, ASD families. Meta-analysis across control data sets confirms female excess in CNV number (P=2.1 × 10−5) and gene content (P=4.1 × 10−3). We additionally observed CNV enrichment in ASD mothers compared with control mothers (P=0.03). We speculate that tolerance for CNV burden contributes to decreased female fetal loss in the population and that ASD-specific maternal CNV burden may contribute to high sibling recurrence. These data emphasize the need for study of familial CNV risk factors in ASDs and the requirement of sex-matched comparisons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Stankiewicz P, Lupski JR . Structural variation in the human genome and its role in disease. Annu Rev Med 2010; 61: 437–455.

    Article  CAS  PubMed  Google Scholar 

  2. Stein JL, Parikshak NN, Geschwind DH . Rare Inherited variation in autism: beginning to see the forest and a few trees. Neuron 2013; 77: 209–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hehir-Kwa JY, Pfundt R, Veltman JA, de Leeuw N . Pathogenic or not? Assessing the clinical relevance of copy number variants. Clin Genet 2013; 84: 415–421.

    Article  CAS  PubMed  Google Scholar 

  4. Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med 2012; 367: 1321–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacquemont S, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S et al. A higher mutational burden in females supports a "female protective model" in neurodevelopmental disorders. Am J Hum Genet 2014; 94: 415–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glessner JT, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011; 70: 863–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y et al. Origins and functional impact of copy number variation in the human genome. Nature 2010; 464: 704–712.

    Article  CAS  PubMed  Google Scholar 

  10. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    Article  PubMed  Google Scholar 

  11. Croen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, Grether JK et al. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry 2008; 64: 583–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsang KM, Croen LA, Torres AR, Kharrazi M, Delorenze GN, Windham GC et al. A genome-wide survey of transgenerational genetic effects in autism. PLoS One 2013; 8: e76978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  PubMed  Google Scholar 

  14. Krumm N, O'Roak BJ, Karakoc E, Mohajeri K, Nelson B, Vives L et al. Transmission disequilibrium of small CNVs in simplex autism. Am J Hum Genet 2013; 93: 595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lundström S, Chang Z, Råstam M, Gillberg C, Larsson H, Anckarsäter H et al. Autism spectrum disorders and autistic like traits: similar etiology in the extreme end and the normal variation. Arch Gen Psychiatry 2012; 69: 46–52.

    Article  PubMed  Google Scholar 

  16. Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F et al. A multivariate twin study of autistic traits in 12-year-olds: testing the fractionable autism triad hypothesis. Behav Genet 2012; 42: 245–255.

    Article  PubMed  Google Scholar 

  17. Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA et al. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med 2009; 163: 907–914.

    Article  PubMed  Google Scholar 

  18. Ritvo ER, Freeman B, Mason-Brothers A, Mo A, Ritvo A . Concordance for the syndrome of autism in 40 pairs of afflicted twins. Am J Psychiatry 1985; 142: 74–77.

    Article  CAS  PubMed  Google Scholar 

  19. Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F et al. Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Arch Gen Psychiatry 2011; 68: 1113–1121.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ronald A, Hoekstra RA . Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 255–274.

    Article  PubMed  Google Scholar 

  21. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011; 68: 1095–1102.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G et al. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 1989; 30: 405–416.

    Article  CAS  PubMed  Google Scholar 

  23. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011; 43: 585–589.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed bywhole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012; 74: 285–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Drs Don Conrad, Jane Gitschier, Noah Zaitlen, Erika Yeh, Ousseny Zerbo and Vincent Yau for helpful discussion, Dr Ye Cheng for CNV calling in the AGRE data set and Kathryn Tsang for population comparisons based on SNP data. We thank all families who participated in and contributed to the studies and the public resources that we have used in these studies. We gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium, the Simons Simplex Collection (SSC) and the participating families. We acknowledge funding sources R01 ES016669 (Croen), R21 HD065273 (Weiss), SFARI 136720 (Weiss) as well as IMHRO and UCSF-REAC support (to Weiss).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Weiss.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desachy, G., Croen, L., Torres, A. et al. Increased female autosomal burden of rare copy number variants in human populations and in autism families. Mol Psychiatry 20, 170–175 (2015). https://doi.org/10.1038/mp.2014.179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.179

This article is cited by

Search

Quick links