Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: a [11C]SB207145 PET study

Abstract

Identification of a biomarker that can inform on extracellular serotonin (5-HT) levels in the brains of living humans would enable greater understanding of the way brain circuits are modulated by serotonergic neurotransmission. Substantial evidence from studies in animals and humans indicates an inverse relationship between central 5-HT tonus and 5-HT type 4 receptor (5-HT4R) density, suggesting that 5-HT4R receptor density may be a biomarker marker for 5-HT tonus. Here, we investigated whether a 3-week administration of a selective serotonin reuptake inhibitor, expected to increase brain 5-HT levels, is associated with a decline in brain 5-HT4R binding. A total of 35 healthy men were studied in a placebo-controlled, randomized, double-blind study. Participants were assigned to receive 3 weeks of oral dosing with placebo or fluoxetine, 40 mg per day. Brain 5-HT4R binding was quantified at baseline and at follow-up with [11C]SB207145 positron emission tomography (PET). Three weeks of intervention with fluoxetine was associated with a 5.2% reduction in brain 5-HT4R binding (P=0.017), whereas placebo intervention did not change 5-HT4R binding (P=0.52). Our findings are consistent with a model, wherein the 5-HT4R density adjusts to changes in the extracellular 5-HT tonus. Our data demonstrate for the first time in humans that the imaging of central 5-HT4R binding may be used as an in vivo biomarker of the central 5-HT tonus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ruhe HG, Huyser J, Swinkels JA, Schene AH . Dose escalation for insufficient response to standard-dose selective serotonin reuptake inhibitors in major depressive disorder: systematic review. Br J Psychiatry 2006; 189: 309–316.

    Article  PubMed  Google Scholar 

  2. Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM . Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab 2010; 30: 1682–1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nord M, Finnema SJ, Halldin C, Farde L . Effect of a single dose of escitalopram on serotonin concentration in the non-human and human primate brain. Int J Neuropsychopharmacol 2013; 25: 1–10.

    Google Scholar 

  4. Selvaraj S, Turkheimer F, Rosso L, Faulkner P, Mouchlianitis E, Roiser JP et al. Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry 2012; 17: 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  5. Pinborg LH, Feng L, Haahr ME, Gillings N, Dyssegaard A, Madsen J et al. No change in [11C]CUMI-101 binding to 5-HT(1A) receptors after intravenous citalopram in human. Synapse 2012; 66: 880–884.

    Article  CAS  PubMed  Google Scholar 

  6. Licht CL, Marcussen AB, Wegener G, Overstreet DH, Aznar S, Knudsen GM . The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration. J Neurochem 2009; 109: 1363–1374.

    Article  CAS  PubMed  Google Scholar 

  7. Vidal R, Valdizan EM, Mostany R, Pazos A, Castro E . Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain. J Neurochem 2009; 110: 1120–1127.

    Article  CAS  PubMed  Google Scholar 

  8. Vidal R, Valdizan EM, Vilaro MT, Pazos A, Castro E . Reduced signal transduction by 5-HT4 receptors after long-term venlafaxine treatment in rats. Br J Pharmacol 2010; 161: 695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jennings KA, Licht CL, Bruce A, Lesch KP, Knudsen GM, Sharp T . Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels. Int J Neuropsychopharmacol 2011; 16: 1–9.

    Google Scholar 

  10. Marner L, Gillings N, Madsen K, Erritzoe D, Baare WF, Svarer C et al. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. Neuroimage 2010; 50: 855–861.

    Article  CAS  PubMed  Google Scholar 

  11. Fisher PM, Holst KK, McMahon B, Haahr ME, Madsen K, Gillings N et al. 5-HTTLPR status predictive of neocortical 5-HT4 binding assessed with [11C]SB207145 PET in humans. NeuroImage 2012; 62: 130–136.

    Article  CAS  PubMed  Google Scholar 

  12. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  13. Stark P, Fuller RW, Wong DT . The pharmacologic profile of fluoxetine. J Clin Psychiatry 1985; 46 (3 Pt 2): 7–13.

    CAS  PubMed  Google Scholar 

  14. Zajecka J, Amsterdam JD, Quitkin FM, Reimherr FW, Rosenbaum JF, Tamura RN et al. Changes in adverse events reported by patients during 6 months of fluoxetine therapy. J Clin Psychiatry 1999; 60: 389–394.

    Article  CAS  PubMed  Google Scholar 

  15. Lucchelli A, Santagostino-Barbone MG, Barbieri A, Candura SM, Tonini M . The interaction of antidepressant drugs with central and peripheral (enteric) 5-HT3 and 5-HT4 receptors. Br J Pharmacol 1995; 114: 1017–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haahr ME, Fisher P, Holst K, Madsen K, Jensen CG, Marner L et al. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans. Hum Brain Mapp 2012 doi:10.1002/hbm.22123 (e-pub ahead of print).

  17. Cohen S, Kamarck T, Mermelstein R . A global measure of perceived stress. J Health Soc Behav 1983; 24: 385–396.

    Article  CAS  PubMed  Google Scholar 

  18. Forsell Y . The Major Depression Inventory versus Schedules for Clinical Assessment in Neuropsychiatry in a population sample. Soc Psychiatry Psychiatr Epidemiol 2005; 40: 209–213.

    Article  PubMed  Google Scholar 

  19. Rice JP, Reich T, Bucholz K, Neuman RJ, Fishman R, Rochberg N et al. Comparison of direct interview and family history diagnoses of alcohol dependence. Alcohol Clin Exp Res 1995; 19: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  20. Lingjaerde O, Ahlfors UG, Bech P, Dencker SJ, Elgen K . The UKU side effect rating scale. A new comprehensive rating scale for psychotropic drugs and a cross-sectional study of side effects in neuroleptic-treated patients. Acta Psychiatr Scand Suppl 1987; 334: 1–100.

    Article  CAS  PubMed  Google Scholar 

  21. Watts R, Spencer EP, Wood M . Quantitative analysis of multiple psychotherapeutic drugs in human serum using UPLC/MS/MS, In: Corporation W (ed). USA, Milford, 2008.

    Google Scholar 

  22. Olesen OV, Sibomana M, Keller SH, Andersen F, Jensen JA, Holm S et al. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE (ISBN: 978-1-4244-3961-4); doi:10.1109/NSSMIC.2009.5401892.

  23. Sureau FC, Reader AJ, Comtat C, Leroy C, Ribeiro MJ, Buvat I et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med 2008; 49: 1000–1008.

    Article  PubMed  Google Scholar 

  24. Haahr ME, Rasmussen PM, Madsen K, Marner L, Ratner C, Gillings N et al. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry. Neuroimage 2012; 61: 884–888.

    Article  CAS  PubMed  Google Scholar 

  25. Woods RP, Cherry SR, Mazziotta JC . Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 1992; 16: 620–633.

    Article  CAS  PubMed  Google Scholar 

  26. Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 2005; 24: 969–979.

    Article  PubMed  Google Scholar 

  27. Marner L, Gillings N, Comley RA, Baare WF, Rabiner EA, Wilson AA et al. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo. J Nucl Med 2009; 50: 900–908.

    Article  CAS  PubMed  Google Scholar 

  28. Kalbitzer J, Erritzoe D, Holst KK, Nielsen FA, Marner L, Lehel S et al. Seasonal changes in brain serotonin transporter binding in short serotonin transporter linked polymorphic region-allele carriers but not in long-allele homozygotes. Biol Psychiatry 2010; 67: 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  29. Wong DT, Bymaster FP, Reid LR, Mayle DA, Krushinski JH, Robertson DW . Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology 1993; 8: 337–344.

    Article  CAS  PubMed  Google Scholar 

  30. Madsen K, Marner L, Haahr M, Gillings N, Knudsen GM . Mass dose effects and in vivo affinity in brain PET receptor studies—a study of cerebral 5-HT4 receptor binding with [11C]SB207145. Nucl Med Biol 2011; 38: 1085–1091.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor S, Abramowitz JS, McKay D . Non-adherence and non-response in the treatment of anxiety disorders. J Anxiety Disord 2012; 26: 583–589.

    Article  PubMed  Google Scholar 

  32. Math SB, Janardhan Reddy YC . Issues in the pharmacological treatment of obsessive-compulsive disorder. Int J Clin Pract 2007; 61: 1188–1197.

    Article  CAS  PubMed  Google Scholar 

  33. Charlier C, Pinto E, Ansseau M, Plomteux G . Relationship between clinical effects, serum drug concentration, and concurrent drug interactions in depressed patients treated with citalopram, fluoxetine, clomipramine, paroxetine or venlafaxine. Hum Psychopharmacol 2000; 15: 453–459.

    Article  CAS  PubMed  Google Scholar 

  34. Invernizzi R, Belli S, Samanin R . Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res 1992; 584: 322–324.

    Article  CAS  PubMed  Google Scholar 

  35. Bel N, Artigas F . Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 1992; 229: 101–103.

    Article  CAS  PubMed  Google Scholar 

  36. Bruinvels AT, Landwehrmeyer B, Gustafson EL, Durkin MM, Mengod G, Branchek TA et al. Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 1994; 33: 367–386.

    Article  CAS  PubMed  Google Scholar 

  37. Lewis DA, Campbell MJ, Foote SL, Morrison JH . The monoaminergic innervation of primate neocortex. Hum Neurobiol 1986; 5: 181–188.

    CAS  PubMed  Google Scholar 

  38. Popa D, Cerdan J, Reperant C, Guiard BP, Guilloux JP, David DJ et al. A longitudinal study of 5-HT outflow during chronic fluoxetine treatment using a new technique of chronic microdialysis in a highly emotional mouse strain. Eur J Pharmacol 2010; 628: 83–90.

    Article  CAS  PubMed  Google Scholar 

  39. Smith TD, Kuczenski R, George-Friedman K, Malley JD, Foote SL . In vivo microdialysis assessment of extracellular serotonin and dopamine levels in awake monkeys during sustained fluoxetine administration. Synapse 2000; 38: 460–470.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G Thomsen, S Larsen, A Dyssegaard and L Freyr for their assistance in scheduling and data collection at both the MR and PET centers. We gratefully acknowledge The John and Birthe Meyer Foundation for the donation of the Cyclotron and PET scanner. This study was funded by GlaxoSmithKline with an unrestricted grant and by a center grant to Center for Integrated Molecular Brain Imaging from the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G M Knudsen.

Ethics declarations

Competing interests

EA Rabiner is a consultant for GSK, Abbvie Takeda and BioTie.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haahr, M., Fisher, P., Jensen, C. et al. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: a [11C]SB207145 PET study. Mol Psychiatry 19, 427–432 (2014). https://doi.org/10.1038/mp.2013.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.147

Keywords

This article is cited by

Search

Quick links