Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing

Abstract

Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits and risk for psychopathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dalgleish T . The emotional brain. Nat Rev Neurosci 2004; 5: 583–589.

    Article  PubMed  Google Scholar 

  2. Bouchard TJ, McGue M . Genetic and environmental influences on human psychological differences. J Neurobiol 2003; 54: 4–45.

    Article  PubMed  Google Scholar 

  3. Bevilacqua L, Goldman D . Genetics of emotion. Trends Cogn Sci 2011; 15: 401–408.

    PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Peter D, Roghani A, Schuldiner S, Privé GG, Eisenberg D et al. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 1992; 70: 539–551.

    Article  CAS  PubMed  Google Scholar 

  5. Peter D, Finn JP, Klisak I, Liu Y, Kojis T, Heinzmann C et al. Chromosomal localization of the human vesicular amine transporter genes. Genomics 1993; 18: 720–723.

    Article  CAS  PubMed  Google Scholar 

  6. Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E . Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 1996; 93: 5166–5171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH . Differential expression of two vesicular monoamine transporters. J Neurosci 1995; 15: 6179–6188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ibanez-Sandoval O, Tecuapetla F, Unal B, Shah F, Koós T, Tepper JM . Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J Neurosci 2010; 30: 6999–7016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ashe KM, Chiu WL, Khalifa AM, Nicolas AN, Brown BL, De Martino RR et al. Vesicular monoamine transporter-1 (VMAT-1) mRNA and immunoreactive proteins in mouse brain. Neuro Endocrinol Lett 2011; 32: 253–258.

    CAS  PubMed  Google Scholar 

  10. Hansson SR, Hoffman BJ, Mezey E . Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. I. The developing rat central nervous system. Brain Res Dev Brain Res 1998; 110: 135–158.

    Article  CAS  PubMed  Google Scholar 

  11. Brunk I, Blex C, Rachakonda S, Höltje M, Winter S, Pahner I et al. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem 2006; 281: 33373–33385.

    Article  CAS  PubMed  Google Scholar 

  12. Schildkraut JJ, Kety SS . Biogenic amines and emotion. Science (New York, NY) 1967; 156: 21–37.

    Article  CAS  Google Scholar 

  13. Goodwin FK, Bunney WE . Depressions following reserpine: a reevaluation. Semin Psychiatry 1971; 3: 435–448.

    CAS  PubMed  Google Scholar 

  14. Bant WP . Antihypertensive drugs and depression: a reappraisal. Psychol Med 1978; 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  15. Widmer RB . Reserpine: the maligned antihypertensive drug. J Fam Pract 1985; 20: 81–83.

    CAS  PubMed  Google Scholar 

  16. Wang YM, Gainetdinov RR, Fumagalli F, Xu F, Jones SR, Bock CB et al. Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 1997; 19: 1285–1296.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V et al. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 1997; 94: 9938–9943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH . Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 1997; 19: 1271–1283.

    Article  CAS  PubMed  Google Scholar 

  19. Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG . Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci 1999; 19: 2424–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Narboux-Neme N, Sagné C, Doly S, Diaz SL, Martin CB, Angenard G et al. Severe serotonin depletion after conditional deletion of the vesicular monoamine transporter 2 gene in serotonin neurons: neural and behavioral consequences. Neuropsychopharmacology 2011; 36: 2538–2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taylor TN, Caudle WM, Miller GW . VMAT2-Deficient mice display nigral and extranigral pathology and motor and nonmotor symptoms of Parkinson’s disease. Parkinson’s Disease 2011; 2011.

  22. Fukui M, Rodriguiz RM, Zhou J, Jiang SX, Phillips LE, Caron MG et al. Vmat2 heterozygous mutant mice display a depressive-like phenotype. J Neurosci 2007; 27: 10520–10529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richards M, Iijima Y, Kondo H, Shizuno T, Hori H, Arima K et al. Association study of the vesicular monoamine transporter 1 (VMAT1) gene with schizophrenia in a Japanese population. Behav Brain Funct 2006; 2: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bly M . Mutation in the vesicular monoamine gene, SLC18A1, associated with schizophrenia. Schizophr Res 2005; 78: 337–338.

    Article  PubMed  Google Scholar 

  25. Chen SF, Chen CH, Chen JY, Wang YC, Lai IC, Liou YJ et al. Support for association of the A277C single nucleotide polymorphism in human vesicular monoamine transporter 1 gene with schizophrenia. Schizophr Res 2007; 90: 363–365.

    Article  PubMed  Google Scholar 

  26. Lohoff FW, Weller AE, Bloch PJ, Buono RJ, Doyle GA, Ferraro TN et al. Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology 2008; 57: 55–60.

    Article  PubMed  Google Scholar 

  27. Lohoff FW, Dahl JP, Ferraro TN, Arnold SE, Gallinat J, Sander T et al. Variations in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) are associated with bipolar I disorder. Neuropsychopharmacology 2006; 31: 2739–2747.

    Article  CAS  PubMed  Google Scholar 

  28. Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP et al. Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis. Eur J Hum Genet 2009; 17: 946–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lohoff FW, Lautenschlager M, Mohr J, Ferraro TN, Sander T, Gallinat J et al. Association between variation in the vesicular monoamine transporter 1 gene on chromosome 8p and anxiety-related personality traits. Neurosci Lett 2008; 434: 41–45.

    Article  CAS  PubMed  Google Scholar 

  30. Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2010; 15: 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  31. Craddock N, O’Donovan MC, Owen MJ . Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 2005; 32: 9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Craddock N, Owen MJ . The Kraepelinian dichotomy—going, going. but still not gone. Br J Psychiatry 2010; 196: 92–95.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Erickson JD, Eiden LE, Hoffman BJ . Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci USA 1992; 89: 10993–10997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Essand M, Vikman S, Grawé J, Gedda L, Hellberg C, Oberg K et al. Identification and characterization of a novel splicing variant of vesicular monoamine transporter 1. J Mol Endocrinol 2005; 35: 489–501.

    Article  CAS  PubMed  Google Scholar 

  35. Mickey BJ, Zhou Z, Heitzeg MM, Heinz E, Hodgkinson CA, Hsu DT et al. Emotion processing, major depression, and functional genetic variation of neuropeptide Y. Arch Gen Psychiatry 2011; 68: 158–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsu DT, Langenecker SA, Kennedy SE, Zubieta JK, Heitzeg MM . fMRI BOLD responses to negative stimuli in the prefrontal cortex are dependent on levels of recent negative life stress in major depressive disorder. Psychiat Res 2010; 183: 202–208.

    Article  Google Scholar 

  37. Heitzeg MM, Nigg JT, Yau WY, Zubieta JK, Zucker RA . Affective circuitry and risk for alcoholism in late adolescence: differences in frontostriatal responses between vulnerable and resilient children of alcoholic parents. Alcohol Clin Exp Res 2008; 32: 414–426.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bradley MM, Lang PJ . Affective Norms for English Words (ANEW): Stimuli, Instruction Manual and Affective Ratings. The Center for Research in Psychophysiology, University of Florida: Gainesville, FL, 1999.

    Google Scholar 

  39. Kraemer HC, Thiemann S . How Many Subjects? Statistical Power Analysis in Research. Sage Publications: Newbury Park, 1987.

    Google Scholar 

  40. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000; 10: 120–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH . An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 2003; 19: 1233–1239.

    Article  PubMed  Google Scholar 

  42. Bogdan R, Hyde LW, Hariri AR . A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Mol Psychiatry, advance online publication, 22 May 2012; doi:10.1038/mp.2012.35 (e-pub ahead of print).

    Article  PubMed  Google Scholar 

  43. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 2009; 106: 1279–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002; 15: 273–289.

    Article  CAS  PubMed  Google Scholar 

  45. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T et al. A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 2010; 468: 1061–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altshuler L, Bookheimer S, Proenza MA, Townsend J, Sabb F, Firestine A et al. Increased amygdala activation during mania: a functional magnetic resonance imaging study. Am J Psychiatry 2005; 162: 1211–1213.

    Article  PubMed  Google Scholar 

  47. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 2009; 66: 1075–1082.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Costafreda SG, Brammer MJ, David AS, Fu CH . Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res Rev 2008; 58: 57–70.

    Article  PubMed  Google Scholar 

  49. Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ . Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb Cortex 2011; 21: 1667–1673.

    Article  PubMed  Google Scholar 

  50. Likhtik E, Pelletier JG, Paz R, Pare D . Prefrontal control of the amygdala. J Neurosci 2005; 25: 7429–7437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE . Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 2010; 167: 509–527.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Buckholtz JW, Callicott JH, Kolachana B, Hariri AR, Goldberg TE, Genderson M et al. Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Mol Psychiatry 2008; 13: 313–324.

    Article  CAS  PubMed  Google Scholar 

  53. Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C et al. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 2004; 55: 578–587.

    Article  PubMed  Google Scholar 

  54. Bora E, Yucel M, Pantelis C . Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophr Bull 2010; 36: 36–42.

    Article  PubMed  Google Scholar 

  55. Jabben N, Arts B, van Os J, Krabbendam L . Neurocognitive functioning as intermediary phenotype and predictor of psychosocial functioning across the psychosis continuum: studies in schizophrenia and bipolar disorder. J Clin Psychiatry 2010; 71: 764–774.

    Article  PubMed  Google Scholar 

  56. Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM et al. Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol Psychiatry 2009; 16: 202–215.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pinheiro AP, Bulik CM, Thornton LM, Sullivan PF, Root TL, Bloss CS et al. Association study of 182 candidate genes in anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1070–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Braff DL, Greenwood TA, Swerdlow NR, Light GA, Schork NJ . Advances in endophenotyping schizophrenia. World Psychiatry 2008; 7: 11–18.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania. Financial support is gratefully acknowledged from National Institutes of Health Grants (NIH K08MH080372 to FWL), NCRR (UL1 RR 024986), NIMH (P01 MH 42251, R25 MH 6374 and K23 MH 074459), NIDA (R01 DA 016423 and R01 DA 022520, and 026222 and 031579) and the Phil F Jenkins Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F W Lohoff.

Ethics declarations

Competing interests

Dr Lohoff declares that he is named as one of the inventors of a patent involving human genetic VMAT1 variants (US Patent No. 7 736 852). Within the 3-year period before submission of the manuscript, Dr Mickey has received salary support from St Jude Medical for research unrelated to this manuscript, and Dr Zubieta has served as a paid consultant for Eli Lilly, Johnson & Johnson, Merck and Abbott for work unrelated to this manuscript. All remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohoff, F., Hodge, R., Narasimhan, S. et al. Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing. Mol Psychiatry 19, 129–139 (2014). https://doi.org/10.1038/mp.2012.193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.193

Keywords

This article is cited by

Search

Quick links