Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

X chromosome and suicide

Abstract

Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90 kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. World Health Organization. World Health Report 2000. Health Systems: Improving Performance. World Health Organization: Geneva, 2000.

  2. Brent DA, Mann JJ . Family genetic studies, suicide, and suicidal behavior. Am J Med Genet C Semin Med Genet 2005; 133: 13–24.

    Article  Google Scholar 

  3. Voracek M, Loibl LM . Genetics of suicide: a systematic review of twin studies. Wien Klin Wochenschr 2007; 119: 463–475.

    Article  CAS  PubMed  Google Scholar 

  4. Schulsinger F, Kety SS, Rosenthal D, Wender PH . A family study of suicide. In: Schou M, Stromgren E (eds). Origin, Prevention and Treatment of Affective Disorders. Academic Press: London, UK, 1979, pp 277–287.

    Google Scholar 

  5. Wender PH, Kety SS, Rosenthal D, Schulsinger F, Ortmann J, Lunde I . Psychiatric disorders in the biological and adoptive families of adopted individuals with affective disorders. Arch Gen Psychiatry 1986; 43: 923–929.

    Article  CAS  PubMed  Google Scholar 

  6. Hesselbrock V, Dick D, Hesselbrock M, Foroud T, Schuckit M, Edenberg H et al. The search for genetic risk factors associated with suicidal behavior. Alcohol Clin Exp Res 2004; 28: 70S–76S.

    Article  PubMed  Google Scholar 

  7. Zubenko GS, Maher BS, Hughes III HB, Zubenko WN, Scott SJ, Marazita ML . Genome-wide linkage survey for genetic loci that affect the risk of suicide attempts in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 2004; 129: 47–54.

    Article  Google Scholar 

  8. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R et al. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 2006; 11: 252–260.

    Article  CAS  PubMed  Google Scholar 

  9. Hawton K . Sex and suicide. Gender differences in suicidal behaviour. Br J Psychiatry 2000; 177: 484–485.

    Article  CAS  PubMed  Google Scholar 

  10. Arsenault-Lapierre G, Kim C, Turecki G . Psychiatric diagnoses in 3275 suicides: a meta-analysis. BMC Psychiatry 2004; 4: 37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schneider B, Wetterling T, Sargk D, Schneider F, Schnabel A, Maurer K et al. Axis I disorders and personality disorders as risk factors for suicide. Eur Arch Psychiatry Clin Neurosci 2006; 256: 17–27.

    Article  PubMed  Google Scholar 

  12. McGirr A, Seguin M, Renaud J, Benkelfat C, Alda M, Turecki G . Gender and risk factors for suicide: evidence for heterogeneity in predisposing mechanisms in a psychological autopsy study. J Clin Psychiatry 2006; 67: 1612–1617.

    Article  PubMed  Google Scholar 

  13. Oquendo MA, Bongiovi-Garcia ME, Galfalvy H, Goldberg PH, Grunebaum MF, Burke AK et al. Sex differences in clinical predictors of suicidal acts after major depression: a prospective study. Am J Psychiatry 2007; 164: 134–141.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kia-Keating BM, Glatt SJ, Tsuang MT . Meta-analyses suggest association between COMT, but not HTR1B, alleles, and suicidal behavior. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 1048–1053.

    Article  Google Scholar 

  15. Ono H, Shirakawa O, Nushida H, Ueno Y, Maeda K . Association between catechol-O-methyltransferase functional polymorphism and male suicide completers. Neuropsychopharmacology 2004; 29: 1374–1377.

    Article  CAS  PubMed  Google Scholar 

  16. Baca-Garcia E, Vaquero C, Diaz-Sastre C, Saiz-Ruiz J, Fernandez-Piqueras J, de Leon J . A gender-specific association between the serotonin transporter gene and suicide attempts. Neuropsychopharmacology 2002; 26: 692–695.

    Article  CAS  PubMed  Google Scholar 

  17. Shindo S, Yoshioka N . Polymorphisms of the cholecystokinin gene promoter region in suicide victims in Japan. Forensic Sci Int 2005; 150: 85–90.

    Article  CAS  PubMed  Google Scholar 

  18. Du L, Faludi G, Palkovits M, Sotonyi P, Bakish D, Hrdina PD . High activity-related allele of MAO-A gene associated with depressed suicide in males. Neuroreport 2002; 13: 1195–1198.

    Article  CAS  PubMed  Google Scholar 

  19. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA . Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262: 578–580.

    Article  CAS  PubMed  Google Scholar 

  20. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851–854.

    Article  CAS  PubMed  Google Scholar 

  21. Brais B, Xie YG, Sanson M, Morgan K, Weissenbach J, Korczyn AD et al. The oculopharyngeal muscular dystrophy locus maps to the region of the cardiac alpha and beta myosin heavy chain genes on chromosome 14q11.2-q13. Hum Mol Genet 1995; 4: 429–434.

    Article  CAS  PubMed  Google Scholar 

  22. Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998; 18: 164–167.

    Article  CAS  PubMed  Google Scholar 

  23. Kibar Z, Der KV, Brais B, Hani V, Fraser FC, Rouleau GA . The gene responsible for Clouston hidrotic ectodermal dysplasia maps to the pericentromeric region of chromosome 13q. Hum Mol Genet 1996; 5: 543–547.

    Article  CAS  PubMed  Google Scholar 

  24. First MB, Gibbon M, Spitzer RL . Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition with Psychotic Screen (SCID-I/P). Biometrics Research Department, New York State Psychiatric Institute: New York, NY, 2001.

    Google Scholar 

  25. C-DIS Management Group. Computerized Diagnostic Interview Schedule (Revised) DSM-III-R. C-DIS Management Group: Ottawa, Ontario, Canada, 1991.

  26. Hercher C, Turecki G, Mechawar N . Through the looking glass: examining neuroanatomical evidence for cellular alterations in major depression. J Psychiatr Res 2009; 43: 947–961.

    Article  PubMed  Google Scholar 

  27. Bird ED, Vonsattel JP . The development of a brain bank. J Neural Transm Suppl 1993; 39: 17–23.

    CAS  PubMed  Google Scholar 

  28. Nolte J . The Human Brain: An Introduction to its Functional Neuroanatomy. Mosby Inc.: St Louis, MO, 2002.

    Google Scholar 

  29. Kim C, Lesage A, Seguin M, Chawky N, Vanier C, Lipp O et al. Patterns of co-morbidity in male suicide completers. Psychol Med 2003; 33: 1299–1309.

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press: Plainview, New York, 1989.

    Google Scholar 

  31. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  32. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  33. Sequeira A, Gwadry FG, Ffrench-Mullen JM, Canetti L, Gingras Y, Casero Jr RA et al. Implication of SSAT by gene expression and genetic variation in suicide and major depression. Arch Gen Psychiatry 2006; 63: 35–48.

    Article  CAS  PubMed  Google Scholar 

  34. Klempan TA, Rujescu D, Merette C, Himmelman C, Sequeira A, Canetti L et al. Profiling brain expression of the spermidine/spermine N(1)-acetyltransferase 1 (SAT1) gene in suicide. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 934–943.

    Article  CAS  PubMed  Google Scholar 

  35. Stine OC, McMahon FJ, Chen L, Xu J, Meyers DA, MacKinnon DF et al. Initial genome screen for bipolar disorder in the NIMH genetics initiative pedigrees: chromosomes 2, 11, 13, 14, and X. Am J Med Genet 1997; 74: 263–269.

    Article  CAS  PubMed  Google Scholar 

  36. Ekholm JM, Pekkarinen P, Pajukanta P, Kieseppa T, Partonen T, Paunio T et al. Bipolar disorder susceptibility region on Xq24-q27.1 in Finnish families. Mol Psychiatry 2002; 7: 453–459.

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Nyholt DR, Magnussen P, Parano E, Pavone P, Geschwind D et al. A genomewide screen for autism susceptibility loci. Am J Hum Genet 2001; 69: 327–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hallmayer J, Hebert JM, Spiker D, Lotspeich L, McMahon WM, Petersen PB et al. Autism and the X chromosome. Multipoint sib-pair analysis. Arch Gen Psychiatry 1996; 53: 985–989.

    Article  CAS  PubMed  Google Scholar 

  39. Gécz J, Barnett S, Liu J, Hollway G, Donnelly A, Eyre H et al. Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 1999; 62: 356–368.

    Article  PubMed  Google Scholar 

  40. O'Connor JA, Muly EC, Arnold SE, Hemby SE . AMPA receptor subunit and splice variant expression in the DLPFC of schizophrenic subjects and rhesus monkeys chronically administered antipsychotic drugs. Schizophr Res 2007; 90: 28–40.

    Article  CAS  PubMed  Google Scholar 

  41. Laje G, Paddock S, Manji H, Rush AJ, Wilson AF, Charney D et al. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 2007; 164: 1530–1538.

    Article  PubMed  Google Scholar 

  42. Magri C, Gardella R, Valsecchi P, Barlati SD, Guizzetti L, Imperadori L et al. Study on GRIA2, GRIA3 and GRIA4 genes highlights a positive association between schizophrenia and GRIA3 in female patients. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 745–753.

    Article  CAS  PubMed  Google Scholar 

  43. Sequeira A, Klempan T, Canetti L, Ffrench-Mullen J, Benkelfat C, Rouleau GA et al. Patterns of gene expression in the limbic system of suicides with and without major depression. Mol Psychiatry 2007; 12: 640–655.

    Article  CAS  PubMed  Google Scholar 

  44. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, Ffrench-Mullen J et al. Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry 2009; 14: 175–189.

    Article  CAS  PubMed  Google Scholar 

  45. Fiori LM, Turecki G . Implication of the polyamine system in mental disorders. J Psychiatry Neurosci 2008; 33: 102–110.

    PubMed  PubMed Central  Google Scholar 

  46. Zeniou M, Ding T, Trivier E, Hanauer A . Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum Mol Genet 2002; 11: 2929–2940.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Martinez JE, Wilson GL, He XY, Tuck-Muller CM, Maertens P et al. A novel RSK2 (RPS6KA3) gene mutation associated with abnormal brain MRI findings in a family with Coffin-Lowry syndrome. Am J Med Genet A 2006; 140: 1274–1279.

    Article  PubMed  Google Scholar 

  48. Merienne K, Jacquot S, Pannetier S, Zeniou M, Bankier A, Gecz J et al. A missense mutation in RPS6KA3 (RSK2) responsible for non-specific mental retardation. Nat Genet 1999; 22: 13–14.

    Article  CAS  PubMed  Google Scholar 

  49. Field M, Tarpey P, Boyle J, Edkins S, Goodship J, Luo Y et al. Mutations in the RSK2(RPS6KA3) gene cause Coffin-Lowry syndrome and nonsyndromic X-linked mental retardation. Clin Genet 2006; 70: 509–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Delaunoy JP, Dubos A, Marques PP, Hanauer A . Identification of novel mutations in the RSK2 gene (RPS6KA3) in patients with Coffin-Lowry syndrome. Clin Genet 2006; 70: 161–166.

    Article  CAS  PubMed  Google Scholar 

  51. Madrigal I, Rodriguez-Revenga L, Badenas C, Sanchez A, Martinez F, Fernandez I et al. MLPA as first screening method for the detection of microduplications and microdeletions in patients with X-linked mental retardation. Genet Med 2007; 9: 117–122.

    Article  CAS  PubMed  Google Scholar 

  52. Tarpey PS, Stevens C, Teague J, Edkins S, O'Meara S, Avis T et al. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am J Hum Genet 2006; 79: 1119–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saillour Y, Zanni G, Des PV, Heron D, Guibaud L, Iba-Zizen MT et al. Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. J Med Genet 2007; 44: 739–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Borck G, Molla-Herman A, Boddaert N, Encha-Razavi F, Philippe A, Robel L et al. Clinical, cellular, and neuropathological consequences of AP1S2 mutations: further delineation of a recognizable X-linked mental retardation syndrome. Hum Mutat 2008; 29: 966–974.

    Article  CAS  PubMed  Google Scholar 

  55. Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P et al. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 2008; 9: 166.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yan Y, Lagenaur C, Narayanan V . Molecular cloning of M6: identification of a PLP/DM20 gene family. Neuron 1993; 11: 423–431.

    Article  CAS  PubMed  Google Scholar 

  57. Yan Y, Narayanan V, Lagenaur C . Expression of members of the proteolipid protein gene family in the developing murine central nervous system. J Comp Neurol 1996; 370: 465–478.

    Article  CAS  PubMed  Google Scholar 

  58. Werner H, Dimou L, Klugmann M, Pfeiffer S, Nave KA . Multiple splice isoforms of proteolipid M6B in neurons and oligodendrocytes. Mol Cell Neurosci 2001; 18: 593–605.

    Article  CAS  PubMed  Google Scholar 

  59. Carrel L, Willard HF . X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005; 434: 400–404.

    Article  CAS  PubMed  Google Scholar 

  60. Isensee J, Witt H, Pregla R, Hetzer R, Regitz-Zagrosek V, Ruiz NP . Sexually dimorphic gene expression in the heart of mice and men. J Mol Med 2008; 86: 61–74.

    Article  PubMed  Google Scholar 

  61. Talebizadeh Z, Simon SD, Butler MG . X chromosome gene expression in human tissues: male and female comparisons. Genomics 2006; 88: 675–681.

    Article  CAS  PubMed  Google Scholar 

  62. Skuse DH . X-linked genes and mental functioning. Hum Mol Genet 2005; 14 (Spec No 1): R27–R32.

    Article  CAS  PubMed  Google Scholar 

  63. Hebebrand J, Hennighausen K . A critical analysis of data presented in eight studies favouring X-linkage of bipolar illness with special emphasis on formal genetic aspects. Hum Genet 1992; 90: 289–293.

    Article  CAS  PubMed  Google Scholar 

  64. Zandi PP, Willour VL, Huo Y, Chellis J, Potash JB, MacKinnon DF et al. Genome scan of a second wave of NIMH genetics initiative bipolar pedigrees: chromosomes 2, 11, 13, 14, and X. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 69–76.

    Article  Google Scholar 

  65. DeLisi LE, Devoto M, Lofthouse R, Poulter M, Smith A, Shields G et al. Search for linkage to schizophrenia on the X and Y chromosomes. Am J Med Genet 1994; 54: 113–121.

    Article  CAS  PubMed  Google Scholar 

  66. Laval SH, Dann JC, Butler RJ, Loftus J, Rue J, Leask SJ et al. Evidence for linkage to psychosis and cerebral asymmetry (relative hand skill) on the X chromosome. Am J Med Genet 1998; 81: 420–427.

    Article  CAS  PubMed  Google Scholar 

  67. Zubenko GS, Maher B, Hughes III HB, Zubenko WN, Stiffler JS, Kaplan BB et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 2003; 123: 1–18.

    Article  Google Scholar 

  68. Gauthier J, Joober R, Dube MP, St Onge J, Bonnel A, Gariepy D et al. Autism spectrum disorders associated with X chromosome markers in French-Canadian males. Mol Psychiatry 2006; 11: 206–213.

    Article  CAS  PubMed  Google Scholar 

  69. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Simard LR, Prescott G, Rochette C, Morgan K, Lemieux B, Mathieu J et al. Linkage disequilibrium analysis of childhood-onset spinal muscular atrophy (SMA) in the French-Canadian population. Hum Mol Genet 1994; 3: 459–463.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Veronique Lebel for technical assistance. This work was supported by the Canadian Institute of Health Research (CIHR) MOPs 79253 and 53321. GT is a Fonds de la recherche en santé du Québec (FRSQ) chercheur boursier. LMF received a scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Turecki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiori, L., Zouk, H., Himmelman, C. et al. X chromosome and suicide. Mol Psychiatry 16, 216–226 (2011). https://doi.org/10.1038/mp.2009.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.132

Keywords

This article is cited by

Search

Quick links