Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function

Abstract

Disrupted in schizophrenia 1 (DISC1), a genetic risk factor for multiple serious psychiatric diseases including schizophrenia, bipolar disorder and autism, is a key regulator of multiple neuronal functions linked to both normal development and disease processes. As these diseases are thought to share a common deficit in synaptic function and architecture, we have analyzed the role of DISC1 using an approach that focuses on understanding the protein–protein interactions of DISC1 specifically at synapses. We identify the Traf2 and Nck-interacting kinase (TNIK), an emerging risk factor itself for disease, as a key synaptic partner for DISC1, and provide evidence that the DISC1–TNIK interaction regulates synaptic composition and activity by stabilizing the levels of key postsynaptic density proteins. Understanding the novel DISC1–TNIK interaction is likely to provide insights into the etiology and underlying synaptic deficits found in major psychiatric diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pardo CA, Eberhart CG . The neurobiology of autism. Brain Pathol 2007; 17: 434–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanacora G, Zarate CA, Krystal JH, Manji HK . Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 2008; 7: 426–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sodhi M, Wood KH, Meador-Woodruff J . Role of glutamate in schizophrenia: integrating excitatory avenues of research. Expert Rev Neurother 2008; 8: 1389–1406.

    Article  CAS  PubMed  Google Scholar 

  4. Coyle JT . Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26: 365–384.

    Article  CAS  PubMed  Google Scholar 

  5. Schiffer HH . Glutamate receptor genes: susceptibility factors in schizophrenia and depressive disorders? Mol Neurobiol 2002; 25: 191–212.

    Article  PubMed  Google Scholar 

  6. Meador-Woodruff JH, Healy DJ . Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 2000; 31: 288–294.

    Article  CAS  PubMed  Google Scholar 

  7. Ohnuma T, Kato H, Arai H, Faull RL, McKenna PJ, Emson PC . Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. NeuroReport 2000; 11: 3133–3137.

    Article  CAS  PubMed  Google Scholar 

  8. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  PubMed  Google Scholar 

  9. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008; 13: 1102–1117.

    Article  CAS  PubMed  Google Scholar 

  10. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK . The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13: 36–64.

    Article  CAS  PubMed  Google Scholar 

  11. Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A . Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci 2009; 29: 12768–12775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    CAS  PubMed  Google Scholar 

  13. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  14. Millar JK, Christie S, Anderson S, Lawson D, Hsiao-Wei Loh D, Devon RS et al. Genomic structure and localisation within a linkage hotspot of disrupted in schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 2001; 6: 173–178.

    CAS  PubMed  Google Scholar 

  15. Wang Q, Jaaro-Peled H, Sawa A, Brandon NJ . How has DISC1 enabled drug discovery? Mol Cell Neurosci 2008; 37: 187–195.

    Article  CAS  PubMed  Google Scholar 

  16. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 2005; 310: 1187–1191.

    Article  CAS  PubMed  Google Scholar 

  17. Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E et al. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci 2007; 27: 9513–9524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A . Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci 2009; 32: 485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005; 7: 1167–1178.

    Article  PubMed  Google Scholar 

  20. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009; 63: 761–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136: 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T et al. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci 2007; 27: 15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bradshaw NJ, Ogawa F, Antolin-Fontes B, Chubb JE, Carlyle BC, Christie S et al. DISC1, PDE4B, and NDE1 at the centrosome and synapse. Biochem Biophys Res Commun 2008; 377: 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  24. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54: 387–402.

    Article  CAS  PubMed  Google Scholar 

  25. Kirkpatrick B, Xu L, Cascella N, Ozeki Y, Sawa A, Roberts RC . DISC1 immunoreactivity at the light and ultrastructural level in the human neocortex. J Comp Neurol 2006; 497: 436–450.

    Article  PubMed  Google Scholar 

  26. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et al. Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74–86.

    Article  CAS  PubMed  Google Scholar 

  27. Brandon NJ . Dissecting DISC1 function through protein-protein interactions. Biochem Soc Trans 2007; 35 (Part 5): 1283–1286.

    Article  CAS  PubMed  Google Scholar 

  28. Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 2005; 280: 5972–5982.

    Article  CAS  PubMed  Google Scholar 

  29. Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M . Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 2004; 279: 21003–21011.

    Article  CAS  PubMed  Google Scholar 

  30. Fu CA, Shen M, Huang BC, Lasaga J, Payan DG, Luo Y . TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. J Biol Chem 1999; 274: 30729–30737.

    Article  CAS  PubMed  Google Scholar 

  31. Taira K, Umikawa M, Takei K, Myagmar BE, Shinzato M, Machida N et al. The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J Biol Chem 2004; 279: 49488–49496.

    Article  CAS  PubMed  Google Scholar 

  32. Mahmoudi T, Li VS, Ng SS, Taouatas N, Vries RG, Mohammed S et al. The kinase TNIK is an essential activator of Wnt target genes. EMBOJ 2009; 28: 3329–3340.

    Article  CAS  Google Scholar 

  33. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533–15538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J et al. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 2007; 12: 815–825.

    Article  CAS  PubMed  Google Scholar 

  35. Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull 2009; 35: 96–108.

    Article  PubMed  Google Scholar 

  36. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Banker GA, Cowan WM . Rat hippocampal neurons in dispersed cell culture. Brain Res 1977; 126: 397–425.

    Article  CAS  PubMed  Google Scholar 

  38. Kamiya A, Tomoda T, Chang J, Takaki M, Zhan C, Morita M et al. DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1. Hum Mol Genet 2006; 15: 3313–3323.

    Article  CAS  PubMed  Google Scholar 

  39. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ et al. Disrupted-in-schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 2010; 13: 327–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nonaka H, Takei K, Umikawa M, Oshiro M, Kuninaka K, Bayarjargal M et al. MINK is a Rap2 effector for phosphorylation of the postsynaptic scaffold protein TANC1. Biochem Biophys Res Commun 2008; 377: 573–578.

    Article  CAS  PubMed  Google Scholar 

  41. Brandon NJ, Schurov I, Camargo LM, Handford EJ, Duran-Jimeniz B, Hunt P et al. Subcellular targeting of DISC1 is dependent on a domain independent from the Nudel binding site. Mol Cell Neurosci 2005; 28: 613–624.

    Article  CAS  PubMed  Google Scholar 

  42. Shu H, Chen S, Bi Q, Mumby M, Brekken DL . Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line. Mol Cell Proteomics 2004; 3: 279–286.

    Article  CAS  PubMed  Google Scholar 

  43. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G et al. Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 2009; 8: 1751–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tomita S, Fukata M, Nicoll RA, Bredt DS . Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 2004; 303: 1508–1511.

    Article  CAS  PubMed  Google Scholar 

  45. Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000; 408: 936–943.

    Article  CAS  PubMed  Google Scholar 

  46. Tomita S, Adesnik H, Sekiguchi M, Zhang W, Wada K, Howe JR et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 2005; 435: 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  47. Bats C, Groc L, Choquet D . The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 2007; 53: 719–734.

    Article  CAS  PubMed  Google Scholar 

  48. Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 2003; 40: 595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ehlers MD . Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 2000; 28: 511–525.

    Article  CAS  PubMed  Google Scholar 

  50. Newpher TM, Ehlers MD . Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol 2009; 19: 218–227.

    Article  PubMed  Google Scholar 

  51. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J . Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 2010; 33: 121–129.

    Article  CAS  PubMed  Google Scholar 

  52. Penzes P, Jones KA . Dendritic spine dynamics—a key role for kalirin-7. Trends Neurosci 2008; 31: 419–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Collins DM, Murdoch H, Dunlop AJ, Charych E, Baillie GS, Wang Q et al. Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through protein kinase A (PKA). Cell Signal 2008; 20: 2356–2369.

    Article  CAS  PubMed  Google Scholar 

  54. Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M, Duran-Jimeniz B et al. Disrupted in schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25: 42–55.

    Article  CAS  PubMed  Google Scholar 

  55. Enomoto A, Asai N, Namba T, Wang Y, Kato T, Tanaka M et al. Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron 2009; 63: 774–787.

    Article  CAS  PubMed  Google Scholar 

  56. Shinoda T, Taya S, Tsuboi D, Hikita T, Matsuzawa R, Kuroda S et al. DISC1 regulates neurotrophin-induced axon elongation via interaction with Grb2. J Neurosci 2007; 27: 4–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cingolani LA, Goda Y . Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 2008; 9: 344–356.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Carsten Korth, Hongjun Song and Atsushi Kamiya for reagents and scientific discussion. We thank Dr Pranab Chanda, Annette Sievers, Lora Cameron-Landis, Xiaotian Zhong and Adarsh Godbole for assistance in protein purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N J Brandon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Charych, E., Pulito, V. et al. The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry 16, 1006–1023 (2011). https://doi.org/10.1038/mp.2010.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.87

Keywords

This article is cited by

Search

Quick links