Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology

Abstract

Although the higher incidence of stress-related psychiatric disorders in females is well documented, its basis is unknown. Here, we show that the receptor for corticotropin-releasing factor (CRF), the neuropeptide that orchestrates the stress response, signals and is trafficked differently in female rats in a manner that could result in a greater response and decreased adaptation to stressors. Most cellular responses to CRF in the brain are mediated by CRF receptor (CRFr) association with the GTP-binding protein, Gs. Receptor immunoprecipitation studies revealed enhanced CRFr-Gs coupling in cortical tissue of unstressed female rats. Previous stressor exposure abolished this sex difference by increasing CRFr-Gs coupling selectively in males. These molecular results mirrored the effects of sex and stress on sensitivity of locus ceruleus (LC)-norepinephrine neurons to CRF. Differences in CRFr trafficking were also identified that could compromise stress adaptation in females. Specifically, stress-induced CRFr association with β-arrestin2, an integral step in receptor internalization, occurred only in male rats. Immunoelectron microscopy confirmed that stress elicited CRFr internalization in LC neurons of male rats exclusively, consistent with reported electrophysiological evidence for stress-induced desensitization to CRF in males. Together, these studies identified two aspects of CRFr function, increased cellular signaling and compromised internalization, which render CRF-receptive neurons of females more sensitive to low levels of CRF and less adaptable to high levels of CRF. CRFr dysfunction in females may underlie their increased vulnerability to develop stress-related pathology, particularly that related to increased activity of the LC-norepinephrine system, such as depression or post-traumatic stress disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB . Sex and depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity and recurrence. J Affect Disord 1993; 29: 85–96.

    Article  CAS  PubMed  Google Scholar 

  2. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB . Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 1995; 52: 1048–1060.

    Article  CAS  PubMed  Google Scholar 

  3. Marcus SM, Young EA, Kerber KB, Kornstein S, Farabaugh AH, Mitchell J et al. Gender differences in depression: findings from the STAR*D study. J Affect Disord 2005; 87: 141–150.

    Article  PubMed  Google Scholar 

  4. Ter Horst GJ, Wichmann R, Gerrits M, Westenbroek C, Lin Y . Sex differences in stress responses: focus on ovarian hormones. Physiol Behav 2009; 97: 239–249.

    Article  CAS  PubMed  Google Scholar 

  5. Young EA, Altemus M . Puberty, ovarian steroids, and stress. Ann NY Acad Sci 2004; 1021: 124–133.

    Article  CAS  PubMed  Google Scholar 

  6. Young EA . Sex differences in response to exogenous corticosterone: a rat model of hypercortisolemia. Mol Psychiatry 1996; 1: 313–319.

    CAS  PubMed  Google Scholar 

  7. Young EA, Ribeiro SC, Ye W . Sex differences in ACTH pulsatility following metyrapone blockade in patients with major depression. Psychoneuroendocrinology 2007; 32: 503–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gold PW, Wong ML, Chrousos GP, Licinio J . Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Mol Psychiatry 1996; 1: 257–264.

    CAS  PubMed  Google Scholar 

  9. Smith MA, Kling MA, Whitfield HJ, Brandt HA, Demitrack MA, Geracioti TD et al. Corticotropin-releasing hormone: from endocrinology to psychobiology. Horm Res 1989; 31: 66–71.

    Article  CAS  PubMed  Google Scholar 

  10. Gold PW, Chrousos GP . Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002; 7: 254–275.

    Article  CAS  PubMed  Google Scholar 

  11. Strohle A, Holsboer F . Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 2003; 36 (Suppl 3): S207–S214.

    PubMed  Google Scholar 

  12. Vamvakopoulos NC, Chrousos GP . Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. J Clin Invest 1993; 92: 1896–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vamvakopoulos NV . Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective. Mediators Inflamm 1995; 4: 163–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vale W, Spiess J, Rivier C, Rivier J . Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  15. Bale TL, Vale WW . CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004; 44: 525–557.

    Article  CAS  PubMed  Google Scholar 

  16. Owens MJ, Nemeroff CB . Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 1991; 43: 425–473.

    CAS  PubMed  Google Scholar 

  17. Van Bockstaele EJ, Colago EE, Valentino RJ . Corticotropin-releasing factor-containing axon terminals synapse onto catecholamine dendrites and may presynaptically modulate other afferents in the rostral pole of the nucleus locus coeruleus in the rat brain. J Comp Neurol 1996; 364: 523–534.

    Article  CAS  PubMed  Google Scholar 

  18. Van Bockstaele EJ, Colago EE, Valentino RJ . Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the co-ordination of emotional and cognitive limbs of the stress response. J Neuroendocrinol 1998; 10: 743–757.

    Article  CAS  PubMed  Google Scholar 

  19. Valentino RJ, Van Bockstaele E . Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 2008; 583: 194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT . Role of the locus coeruleus in emotional activation. Prog Brain Res 1996; 107: 380–402.

    Google Scholar 

  21. Page ME, Berridge CW, Foote SL, Valentino RJ . Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neurosci Lett 1993; 164: 81–84.

    Article  CAS  PubMed  Google Scholar 

  22. Lechner SM, Curtis AL, Brons R, Valentino RJ . Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res 1997; 756: 114–124.

    Article  CAS  PubMed  Google Scholar 

  23. Wong ML, Kling MA, Munson PJ, Listwak S, Licinio J, Prolo P et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci USA 2000; 97: 325–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O′Donnell T, Hegadoren KM, Coupland NC . Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder. Neuropsychobiology 2004; 50: 273–283.

    Article  PubMed  Google Scholar 

  25. Southwick SM, Bremner JD, Rasmusson A, Morgan III CA, Arnsten A, Charney DS . Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry 1999; 46: 1192–1204.

    Article  CAS  PubMed  Google Scholar 

  26. Curtis AL, Bethea T, Valentino RJ . Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology 2006; 31: 544–554.

    Article  CAS  PubMed  Google Scholar 

  27. Hillhouse EW, Grammatopoulos DK . The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 2006; 27: 260–286.

    Article  CAS  PubMed  Google Scholar 

  28. Teli T, Markovic D, Levine MA, Hillhouse EW, Grammatopoulos DK . Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization. Mol Endocrinol 2005; 19: 474–490.

    Article  CAS  PubMed  Google Scholar 

  29. Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL . Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol 2007; 293: R209–R222.

    Article  CAS  PubMed  Google Scholar 

  30. Carr GV, Bangasser DA, Bethea T, Young M, Valentino RJ, Lucki I . Antidepressant-Like Effects of kappa-Opioid Receptor Antagonists in Wistar Kyoto Rats. Neuropsychopharmacology 2009; 35: 752–763.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reyes BA, Fox K, Valentino RJ, Van Bockstaele EJ . Agonist-induced internalization of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Eur J Neurosci 2006; 23: 2991–2998.

    Article  PubMed  Google Scholar 

  32. Reyes BA, Valentino RJ, Van Bockstaele EJ . Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 2008; 149: 122–130.

    Article  CAS  PubMed  Google Scholar 

  33. Rominger DH, Rominger CM, Fitzgerald LW, Grzanna R, Largent BL, Zaczek R . Characterization of [125I]sauvagine binding to CRH2 receptors: membrane homogenate and autoradiographic studies. J Pharmacol Exp Ther 1998; 286: 459–468.

    CAS  PubMed  Google Scholar 

  34. Chen FM, Bilezikjian LM, Perrin MH, Rivier J, Vale W . Corticotropin releasing factor receptor-mediated stimulation of adenylate cyclase activity in the rat brain. Brain Res 1986; 381: 49–57.

    Article  CAS  PubMed  Google Scholar 

  35. Battaglia G, Webster EL, De Souza EB . Characterization of corticotropin-releasing factor receptor-mediated adenylate cyclase activity in the rat central nervous system. Synapse 1987; 1: 572–581.

    Article  CAS  PubMed  Google Scholar 

  36. De Souza EB . Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 1995; 20: 789–819.

    Article  CAS  PubMed  Google Scholar 

  37. Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 2000; 428: 191–212.

    Article  CAS  PubMed  Google Scholar 

  38. Premont RT . Once and future signaling: G protein-coupled receptor kinase control of neuronal sensitivity. Neuromolecular Med 2005; 7: 129–147.

    Article  CAS  PubMed  Google Scholar 

  39. Krupnick JG, Benovic JL . The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 1998; 38: 289–319.

    Article  CAS  PubMed  Google Scholar 

  40. Holmes KD, Babwah AV, Dale LB, Poulter MO, Ferguson SS . Differential regulation of corticotropin releasing factor 1alpha receptor endocytosis and trafficking by beta-arrestins and Rab GTPases. J Neurochem 2006; 96: 934–949.

    Article  CAS  PubMed  Google Scholar 

  41. Swaab DF, Bao AM, Lucassen PJ . The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4: 141–194.

    Article  CAS  PubMed  Google Scholar 

  42. Frederiksen SO, Ekman R, Gottfries CG, Widerlov E, Jonsson S . Reduced concentrations of galanin, arginine vasopressin, neuropeptide Y and peptide YY in the temporal cortex but not in the hypothalamus of brains from schizophrenics. Acta Psychiatr Scand 1991; 83: 273–277.

    Article  CAS  PubMed  Google Scholar 

  43. Viau V, Bingham B, Davis J, Lee P, Wong M . Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology 2005; 146: 137–146.

    Article  CAS  PubMed  Google Scholar 

  44. Iwasaki-Sekino A, Mano-Otagiri A, Ohata H, Yamauchi N, Shibasaki T . Gender differences in corticotropin and corticosterone secretion and corticotropin-releasing factor mRNA expression in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala in response to footshock stress or psychological stress in rats. Psychoneuroendocrinology 2009; 34: 226–237.

    Article  CAS  PubMed  Google Scholar 

  45. Desbonnet L, Garrett L, Daly E, McDermott KW, Dinan TG . Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int J Dev Neurosci 2008; 26: 259–268.

    Article  CAS  PubMed  Google Scholar 

  46. Patchev VK, Hayashi S, Orikasa C, Almeida OF . Ontogeny of gender-specific responsiveness to stress and glucocorticoids in the rat and its determination by the neonatal gonadal steroid environment. Stress 1999; 3: 41–54.

    Article  CAS  PubMed  Google Scholar 

  47. Seale JV, Wood SA, Atkinson HC, Harbuz MS, Lightman SL . Postnatal masculinization alters the HPA axis phenotype in the adult female rat. J Physiol 2005; 563 (Part 1): 265–274.

    Article  CAS  PubMed  Google Scholar 

  48. van de Stolpe A, Slycke AJ, Reinders MO, Zomer AW, Goodenough S, Behl C et al. Estrogen receptor (ER)-mediated transcriptional regulation of the human corticotropin-releasing hormone-binding protein promoter: differential effects of ERalpha and ERbeta. Mol Endocrinol 2004; 18: 2908–2923.

    Article  CAS  PubMed  Google Scholar 

  49. Bohler Jr HC, Zoeller RT, King JC, Rubin BS, Weber R, Merriam GR . Corticotropin releasing hormone mRNA is elevated on the afternoon of proestrus in the parvocellular paraventricular nuclei of the female rat. Brain Res Mol Brain Res 1990; 8: 259–262.

    Article  CAS  PubMed  Google Scholar 

  50. Speert DB, SJ MC, Seasholtz AF . Sexually dimorphic expression of corticotropin-releasing hormone-binding protein in the mouse pituitary. Endocrinology 2002; 143: 4730–4741.

    Article  CAS  PubMed  Google Scholar 

  51. Jedema HP, Grace AA . Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J Neurosci 2004; 24: 9703–9713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K et al. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci USA 1994; 91: 8777–8781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grammatopoulos DK, Randeva HS, Levine MA, Kanellopoulou KA, Hillhouse EW . Rat cerebral cortex corticotropin-releasing hormone receptors: evidence for receptor coupling to multiple G-proteins. J Neurochem 2001; 76: 509–519.

    Article  CAS  PubMed  Google Scholar 

  54. Refojo D, Echenique C, Muller MB, Reul JM, Deussing JM, Wurst W et al. Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proc Natl Acad Sci USA 2005; 102: 6183–6188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Curtis AL, Pavcovich LA, Grigoriadis DE, Valentino RJ . Previous stress alters corticotropin-releasing factor neurotransmission in the locus coeruleus. Neuroscience 1995; 65: 541–550.

    Article  CAS  PubMed  Google Scholar 

  56. Valentino RJ, Van Bockstaele EJ . Functional interactions between stress neuromediator and the locus coeruleur-noradrenaline system. In: Steckler TK, N. (ed). Handbook of Stress and the Brain. Elsevier: The Netherlands, 2005 pp 465–486.

    Google Scholar 

  57. Curtis AL, Pavcovich LA, Valentino RJ . Long-term regulation of locus ceruleus sensitivity to corticotropin-releasing factor by swim stress. J Pharmacol Exp Ther 1999; 289: 1211–1219.

    CAS  PubMed  Google Scholar 

  58. Dalla C, Pitychoutis PM, Kokras N, Papadopoulou-Daifoti Z . Sex differences in animal models of depression and antidepressant response. Basic Clin Pharmacol Toxicol 2009; 106: 226–233.

    Article  PubMed  Google Scholar 

  59. Palanza P . Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev 2001; 25: 219–233.

    Article  CAS  PubMed  Google Scholar 

  60. Cryan JF, Mombereau C . In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9: 326–357.

    Article  CAS  PubMed  Google Scholar 

  61. Aston-Jones G, Rajkowski J, Cohen J . Locus coeruleus and regulation of behavioral flexibility and attention. Prog Brain Res 2000; 126: 165–182.

    Article  CAS  PubMed  Google Scholar 

  62. Aston-Jones G, Cohen JD . An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 2005; 28: 403–450.

    Article  CAS  PubMed  Google Scholar 

  63. Berridge CW, Waterhouse BD . The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 2003; 42: 33–84.

    Article  PubMed  Google Scholar 

  64. Nemeroff CB . The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1996; 1: 336–342.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by USPHS Grant MH40008 to RJV, and MH014654 and MH084423 to DAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Bangasser.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bangasser, D., Curtis, A., Reyes, B. et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry 15, 896–904 (2010). https://doi.org/10.1038/mp.2010.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.66

Keywords

This article is cited by

Search

Quick links