Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain

Abstract

Bipolar disorder (BD) is one of the most common and persistent psychiatric disorders. Early-onset BD has been shown to be the most severe and familial form. We recently carried out a whole-genome linkage analysis on sibpairs affected by early-onset BD and showed that the 20p12 region was more frequently shared in our families than expected by chance. The synaptosomal-associated protein SNAP25 is a presynaptic plasma membrane protein essential for the triggering of vesicular fusion and neurotransmitter release, and for which abnormal protein levels have been reported in postmortem studies of bipolar patients. We hypothesised that variations in the gene encoding SNAP25, located on chromosome 20p12, might influence the susceptibility to early-onset BD. We screened SNAP25 for mutations and performed a case–control association study in 197 patients with early-onset BD, 202 patients with late-onset BD and 136 unaffected subjects. In addition, we analysed the expression level of the two SNAP25 isoforms in 60 brains. We showed that one variant, located in the promoter region, was associated with early-onset BD but not with the late-onset subgroup. In addition, individuals homozygous for this variant showed a significant higher SNAP25b expression level in prefrontal cortex. These results show that variations in SNAP25, associated with an increased gene expression level in prefrontal cortex, might predispose to early-onset BD. Further analyses of this gene, as well as analysis of genes encoding for the SNAP25 protein partners, are required to understand the impact of such molecular mechanisms in BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

Ensembl

GenBank/EMBL/DDBJ

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edn. American Psychiatric Press: Washington, DC, 1994.

  2. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A . The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497–502.

    Article  Google Scholar 

  3. Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J . Psychiatric genetics: search for phenotypes. Trends Neurosci 1998; 21: 102–105.

    Article  CAS  Google Scholar 

  4. Bellivier F, Golmard JL, Henry C, Leboyer M, Schurhoff F . Admixture analysis of age at onset in bipolar I affective disorder. Arch Gen Psychiatry 2001; 58: 510–512.

    Article  CAS  Google Scholar 

  5. Bellivier F, Golmard JL, Rietschel M, Schulze TG, Malafosse A, Preisig M et al. Age at onset in bipolar I affective disorder: further evidence for three subgroups. Am J Psychiatry 2003; 160: 999–1001.

    Article  Google Scholar 

  6. Lin PI, McInnis MG, Potash JB, Willour V, MacKinnon DF, DePaulo JR et al. Clinical correlates and familial aggregation of age at onset in bipolar disorder. Am J Psychiatry 2006; 163: 240–246.

    Article  PubMed Central  Google Scholar 

  7. Leboyer M, Henry C, Paillere-Martinot ML, Bellivier F . Age at onset in bipolar affective disorders: a review. Bipolar Disord 2005; 7: 111–118.

    Article  PubMed Central  Google Scholar 

  8. Etain B, Mathieu F, Rietschel M, Maier W, Albus M, McKeon P et al. Genome-wide scan for genes involved in bipolar affective disorder in 70 European families ascertained through a bipolar type I early-onset proband: supportive evidence for linkage at 3p14. Mol Psychiatry 2006; 11: 685–694.

    Article  CAS  PubMed Central  Google Scholar 

  9. Cichon S, Schumacher J, Muller DJ, Hurter M, Windemuth C, Strauch K et al. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 2001; 10: 2933–2944.

    Article  CAS  PubMed Central  Google Scholar 

  10. Morissette J, Villeneuve A, Bordeleau L, Rochette D, Laberge C, Gagne B et al. Genome-wide search for linkage of bipolar affective disorders in a very large pedigree derived from a homogeneous population in Quebec points to a locus of major effect on chromosome 12q23-q24. Am J Med Genet 1999; 88: 567–587.

    Article  CAS  PubMed Central  Google Scholar 

  11. Radhakrishna U, Senol S, Herken H, Gucuyener K, Gehrig C, Blouin JL et al. An apparently dominant bipolar affective disorder (BPAD) locus on chromosome 20p11.2-q11.2 in a large Turkish pedigree. Eur J Hum Genet 2001; 9: 39–44.

    Article  CAS  Google Scholar 

  12. Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE et al. Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 1997; 68: 176–186.

    Article  CAS  Google Scholar 

  13. Sorensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC et al. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 2003; 114: 75–86.

    Article  CAS  Google Scholar 

  14. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J . Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 2001; 12: 3257–3262.

    Article  CAS  Google Scholar 

  15. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B . Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 2006; 8: 133–143.

    Article  CAS  PubMed Central  Google Scholar 

  16. Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M et al. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000; 5: 405–409.

    Article  CAS  Google Scholar 

  17. Faraone SV, Glatt SJ, Tsuang MT . The genetics of pediatric-onset bipolar disorder. Biol Psychiatry 2003; 53: 970–977.

    Article  Google Scholar 

  18. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1313–1323.

    Article  CAS  Google Scholar 

  19. Nurnberger Jr JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 1994; 51: 849–859; discussion 863–844.

    Article  Google Scholar 

  20. Montgomery SA, Asberg M . A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–389.

    Article  CAS  Google Scholar 

  21. Bech P, Rafaelsen OJ, Kramp P, Bolwig TG . The Mania Rating Scale: scale construction and inter-observer agreement. Neuropharmacology 1978; 17: 430–431.

    Article  CAS  Google Scholar 

  22. Maxwell ME . Family Interview for Genetic Studies. Clinical Neurogenetic Branch, Intramural Research Program, NIMH, 1992.

    Google Scholar 

  23. Manchia M, Lampus S, Chillotti C, Sardu C, Ardau R, Severino G et al. Age at onset in Sardinian bipolar I patients: evidence for three subgroups. Bipolar Disord 2008; 10: 443–446.

    Article  Google Scholar 

  24. Grigoroiu-Serbanescu M, Martinez M, Nothen MM, Grinberg M, Sima D, Propping P et al. Different familial transmission patterns in bipolar I disorder with onset before and after age 25. Am J Med Genet 2001; 105: 765–773.

    Article  CAS  Google Scholar 

  25. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The Stanley foundation brain collection and neuropathology consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  Google Scholar 

  26. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  27. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed Central  Google Scholar 

  28. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  29. Reich DE, Goldstein DB . Detecting association in a case–control study while correcting for population stratification. Genet Epidemiol 2001; 20: 4–16.

    Article  CAS  Google Scholar 

  30. Ryabinin AE, Sato TN, Morris PJ, Latchman DS, Wilson MC . Immediate upstream promoter regions required for neurospecific expression of SNAP-25. J Mol Neurosci 1995; 6: 201–210.

    Article  CAS  Google Scholar 

  31. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349–356.

    Article  PubMed Central  Google Scholar 

  32. Hess EJ, Jinnah HA, Kozak CA, Wilson MC . Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 1992; 12: 2865–2874.

    Article  CAS  Google Scholar 

  33. Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002; 5: 19–26.

    Article  CAS  Google Scholar 

  34. Cai F, Chen B, Zhou W, Zis O, Liu S, Holt RA et al. SP1 regulates a human SNAP-25 gene expression. J Neurochem 2008; 105: 512–523.

    Article  CAS  Google Scholar 

  35. Smith MD, Dawson SJ, Latchman DS . Inhibition of neuronal process outgrowth and neuronal specific gene activation by the Brn-3b transcription factor. J Biol Chem 1997; 272: 1382–1388.

    Article  CAS  Google Scholar 

  36. Bark IC, Hahn KM, Ryabinin AE, Wilson MC . Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proc Natl Acad Sci USA 1995; 92: 1510–1514.

    Article  CAS  Google Scholar 

  37. Delgado-Martinez I, Nehring RB, Sorensen JB . Differential abilities of SNAP-25 homologs to support neuronal function. J Neurosci 2007; 27: 9380–9391.

    Article  CAS  Google Scholar 

  38. Nagy G, Milosevic I, Fasshauer D, Muller EM, de Groot BL, Lang T et al. Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain. Mol Biol Cell 2005; 16: 5675–5685.

    Article  CAS  PubMed Central  Google Scholar 

  39. Washbourne P, Cansino V, Mathews JR, Graham M, Burgoyne RD, Wilson MC . Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting. Biochem J 2001; 357: 625–634.

    Article  CAS  PubMed Central  Google Scholar 

  40. Bark C, Bellinger FP, Kaushal A, Mathews JR, Partridge LD, Wilson MC . Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission. J Neurosci 2004; 24: 8796–8805.

    Article  CAS  Google Scholar 

  41. Owe-Larsson B, Berglund M, Kristensson K, Garoff H, Larhammar D, Brodin L et al. Perturbation of the synaptic release machinery in hippocampal neurons by overexpression of SNAP-25 with the Semliki Forest virus vector. Eur J Neurosci 1999; 11: 1981–1987.

    Article  CAS  Google Scholar 

  42. Shastry BS . Bipolar disorder: an update. Neurochem Int 2005; 46: 273–279.

    Article  CAS  Google Scholar 

  43. Fortin GD, Desrosiers CC, Yamaguchi N, Trudeau LE . Basal somatodendritic dopamine release requires SNARE proteins. J Neurochem 2006; 96: 1740–1749.

    Article  CAS  Google Scholar 

  44. Choi TK, Lee HS, Kim JW, Park TW, Song DH, Yook KW et al. Support for the MnlI polymorphism of SNAP25; a Korean ADHD case–control study. Mol Psychiatry 2007; 12: 224–226.

    Article  CAS  Google Scholar 

  45. Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R et al. The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 2005; 10: 998–1005, 1973.

    Article  CAS  Google Scholar 

  46. Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF . Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 2003; 8: 309–315.

    Article  CAS  Google Scholar 

  47. Wozniak J, Biederman J, Kiely K, Ablon JS, Faraone SV, Mundy E et al. Mania-like symptoms suggestive of childhood-onset bipolar disorder in clinically referred children. J Am Acad Child Adolesc Psychiatry 1995; 34: 867–876.

    Article  CAS  Google Scholar 

  48. Kim JW, Biederman J, Arbeitman L, Fagerness J, Doyle AE, Petty C et al. Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 781–790.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM (Poste d’Accueil INSERM to BE), the National Alliance for Research on Schizophrenia and Affective Disorders (2004 Independent Investigator Award to FB), Assistance Publique des Hôpitaux de Paris, Agence Nationale pour la Recherche (ANR NEURO2006 – Project MANAGE_BPAD), Fondation pour la Recherche sur le Cerveau and Réseau Thématique de Recherche et de Soins en Santé Mentale (Fondation FondaMental). We thank bipolar patients and controls for their participation. Brain specimens were donated by The Stanley Medical Research Institute Brain Collection courtesy of Dr Michael B Knable, Dr E Fuller Torrey, Dr Maree J Webster and Dr Robert H Yolken. We thank MJ Pereira Gomes, E Abadie, A Philippe, the Cochin Hospital cell library (Dr J Chelly), the Clinical Investigation Centre (CIC) of Mondor Hospital (Dr O Montagne and Dr B Ghaleh) and blood donor centre (Dr JL Beaumont and Dr B Mignen, EFS, Créteil) for technical assistance. We thank B Cochet, O Elgrabli, A Raust and L Zanouy for their participation in the clinical evaluation of patients. We thank Professor D Kupfer for helpful discussion and comments on the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Jamain.

Additional information

Competing interests

The authors have declared that no competing interest exists.

Accession numbers

SNAP25, GeneID:6616, HGNC:11132, Ensembl:ENSG00000132639

SNAP25a, NM_003081

SNAP25b, NM_130811

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etain, B., Dumaine, A., Mathieu, F. et al. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 15, 748–755 (2010). https://doi.org/10.1038/mp.2008.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.148

Keywords

This article is cited by

Search

Quick links