Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association scan for five major dimensions of personality

Abstract

Personality traits are summarized by five broad dimensions with pervasive influences on major life outcomes, strong links to psychiatric disorders and clear heritable components. To identify genetic variants associated with each of the five dimensions of personality we performed a genome-wide association (GWA) scan of 3972 individuals from a genetically isolated population within Sardinia, Italy. On the basis of the analyses of 362 129 single-nucleotide polymorphisms we found several strong signals within or near genes previously implicated in psychiatric disorders. They include the association of neuroticism with SNAP25 (rs362584, P=5 × 10−5), extraversion with BDNF and two cadherin genes (CDH13 and CDH23; Ps<5 × 10−5), openness with CNTNAP2 (rs10251794, P=3 × 10−5), agreeableness with CLOCK (rs6832769, P=9 × 10−6) and conscientiousness with DYRK1A (rs2835731, P=3 × 10−5). Effect sizes were small (less than 1% of variance), and most failed to replicate in the follow-up independent samples (N up to 3903), though the association between agreeableness and CLOCK was supported in two of three replication samples (overall P=2 × 10−5). We infer that a large number of loci may influence personality traits and disorders, requiring larger sample sizes for the GWA approach to confidently identify associated genetic variants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bouchard TJ, Loehlin JC . Genes, evolution, and personality. Behav Genet 2001; 31: 243–273.

    Article  PubMed  Google Scholar 

  2. Jang KL, McCrae RR, Angleitner A, Riemann R, Livesley WJ . Heritability of facet-level traits in a cross-cultural twin sample: support for a hierarchical model of personality. J Pers Soc Psychol 1998; 74: 1556–1565.

    Article  CAS  PubMed  Google Scholar 

  3. Pilia G, Chen WM, Scuteri A, Orrú M, Albai G, Dei M et al. Heritability of cardiovascular and personality traits in 6148 sardinians. PloS Genet 2006; 2: e132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fullerton J, Cubin M, Tiwari H, Wang C, Bomhra A, Davidson S et al. Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. Am J Hum Genet 2003; 72: 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nash MW, Huezo-Diaz P, Williamson RJ, Sterne A, Purcell S, Hoda F et al. Genome-wide linkage analysis of a composite index of neuroticism and mood-related scales in extreme selected sibships. Hum Mol Genet 2004; 13: 2173–2182.

    Article  CAS  PubMed  Google Scholar 

  6. Neale BM, Sullivan PF, Kendler KS . A genome scan of neuroticism in nicotine dependent smokers. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 65–69.

    Article  Google Scholar 

  7. Kuo PH, Neale MC, Riley BP, Patterson DG, Walsh D, Prescott CA et al. A genome-wide linkage analysis for the personality trait neuroticism in the Irish affected sib-pair study of alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 463–468.

    Article  CAS  Google Scholar 

  8. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007; 3: e115B.

    Article  CAS  Google Scholar 

  9. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316: 889–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet 2007; 39: 1245–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, Bonnycastle LL et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 2008; 40: 198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  CAS  Google Scholar 

  14. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38: 320–323.

    Article  CAS  PubMed  Google Scholar 

  15. Shifman S, Bhomra A, Smiley S, Wray NR, James MR, Martin NG et al. A whole genome association study of neuroticism using DNA pooling. Mol Psychiatry 2008; 13: 302–312.

    Article  CAS  PubMed  Google Scholar 

  16. McCrae RR, Costa Jr PT . Personality in Adulthood: A Five-Factor Theory Perspective, 2nd edn. Guilford Press: New York, 2003.

    Book  Google Scholar 

  17. McCrae RR, Terracciano A . 78 members of the personality profiles of cultures Project. Universal features of personality traits from the observer's perspective: data from 50 cultures. J Pers Soc Psychol 2005; 88: 547–561.

    Article  PubMed  Google Scholar 

  18. Costa Jr PT, Terracciano A, McCrae RR . Gender differences in personality traits across cultures: robust and surprising findings. J Pers Soc Psychol 2001; 81: 322–331.

    Article  PubMed  Google Scholar 

  19. McCrae RR, Costa Jr PT, de Lima MP, Simões A, Ostendorf F, Angleitner A et al. Age differences in personality across the adult life span: parallels in five cultures. Dev Psychol 1999; 35: 466–477.

    Article  CAS  PubMed  Google Scholar 

  20. Paunonen SV . Big five factors of personality and replicated predictions of behavior. J Pers Soc Psychol 2003; 84: 411–424.

    Article  PubMed  Google Scholar 

  21. Ozer DJ, Benet-Martinez V . Personality and the prediction of consequential outcomes. Annu Rev Psychol 2006; 57: 8.1–8.21.

    Article  Google Scholar 

  22. Costa Jr PT, McCrae RR . Influence of extraversion and neuroticism on subjective well-being: happy and unhappy people. J Pers Soc Psychol 1980; 38: 668–678.

    Article  PubMed  Google Scholar 

  23. Chamorro-Premuzic T, Furnham A . Personality traits and academic examination performance. Eur J Pers 2003; 17: 237–250.

    Article  Google Scholar 

  24. Gottfredson GD, Jones EM, Holland JL . Personality and vocational interests: the relation of Holland's six interest dimensions to the five robust dimensions of personality. J Couns Psychol 1993; 40: 518–524.

    Article  Google Scholar 

  25. Kelly EL, Conley JJ . Personality and compatibility: a prospective analysis of marital stability and marital satisfaction. J Pers Soc Psychol 1987; 52: 27–40.

    Article  CAS  PubMed  Google Scholar 

  26. Terracciano A, Lockenhoff CE, Crum RM, Bienvenu OJ, Costa Jr PT . Five-factor model personality profiles of drug users. BMC Psychiatry 2008; 8: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Trobst KK, Herbst JH, Masters III HL, Costa Jr PT . Personality pathways to unsafe sex: personality, condom use, and HIV risk behaviors. J Res Pers 2002; 36: 117–133.

    Article  Google Scholar 

  28. Terracciano A, Lockenhoff CE, Zonderman AB, Ferrucci L, Costa Jr PT . Personality predictors of longevity: activity, emotional stability, and conscientiousness. Psychosom Med 2008; 70: 621–627.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Widiger TA, Costa Jr PT, McCrae RR . A proposal for Axis II: diagnosing personality disorders using the Five-Factor Model. In: Costa Jr PT, Widiger TA (eds). Personality Disorders and the Five-Factor Model of Personality, 2nd edn. American Psychological Association: Washington, DC, 2002, pp 431–456.

    Chapter  Google Scholar 

  30. Widiger TA, Trull TJ . Plate tectonics in the classification of personality disorder: shifting to a dimensional model. Am Psychol 2007; 62: 71–83.

    Article  PubMed  Google Scholar 

  31. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ . A longitudinal twin study of personality and major depression in women. Arch Gen Psychiatry 1993; 50: 853–862.

    Article  CAS  PubMed  Google Scholar 

  32. Dinzeo TJ, Docherty NM . Normal personality characteristics in schizophrenia: a review of the literature involving the FFM. J Nerv Ment Dis 2007; 195: 421–429.

    PubMed  Google Scholar 

  33. Bagby RM, Rector NA, Bindseil K, Dickens SE, Levitan RD, Kennedy SH . Self-report ratings and informant ratings of personalities of depressed outpatients. Am J Psychiatry 1998; 155: 437–438.

    Article  CAS  PubMed  Google Scholar 

  34. Kendler KS, Gatz M, Gardner CO, Pedersen NL . Personality and major depression: a Swedish longitudinal, population-based twin study. Arch Gen Psychiatry 2006; 63: 1113–1120.

    Article  PubMed  Google Scholar 

  35. Fanous A, Gardner CO, Prescott CA, Cancro R, Kendler KS . Neuroticism, major depression and gender: a population-based twin study. Psychol Med 2002; 32: 719–728.

    Article  CAS  PubMed  Google Scholar 

  36. Hettema JM, Neale MC, Myers JM, Prescott CA, Kendler KS . A population-based twin study of the relationship between neuroticism and internalizing disorders. Am J Psychiatry 2006; 163: 857–864.

    Article  PubMed  Google Scholar 

  37. Savitz JB, Cupido CL, Ramesar RS . Trends in suicidology: personality as an endophenotype for molecular genetic investigations. PLoS Med 2006; 3: e107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Costa Jr PT, McCrae RR . Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) Professional Manual. Psychological Assessment Resources: Odessa, FL, 1992.

    Google Scholar 

  39. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of {beta}-thalassemia. Proc Natl Acad Sci USA 2008; 105: 1620–1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A et al. The GLUT9 gene is associated with serum uric acid levels in sardinia and chianti cohorts. PLoS Genet 2007; 3: e194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008; 40: 161–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Service S, DeYoung J, Karayiorgou M, Roos JL, Pretorious H, Bedoya G et al. Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat Genet 2006; 38: 556–560.

    Article  CAS  PubMed  Google Scholar 

  43. Costa Jr PT, Terracciano A, Uda M, Vacca L, Mameli C, Pilia G et al. Personality traits in Sardinia: testing founder population effects on trait means and variances. Behav Genet 2007; 37: 376–387.

    Article  PubMed  Google Scholar 

  44. Terracciano A . The Italian version of the NEO PI-R: conceptual and empirical support for the use of targeted rotation. Pers Indiv Differ 2003; 35: 1859–1872.

    Article  Google Scholar 

  45. Terracciano A, Costa PTJ, McCrae RR . Personality plasticity after age 30. Pers Soc Psychol Bull 2006; 32: 999–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yamagata S, Suzuki A, Ando J, Ono Y, Kijima N, Yoshimura K et al. Is the genetic structure of human personality universal? A cross-cultural twin study from North America, Europe, and Asia. J Pers Soc Psychol 2006; 90: 987–998.

    Article  PubMed  Google Scholar 

  47. Chen WM, Abecasis GR . Family-based association tests for genomewide association scans. Am J Hum Genet 2007; 81: 913–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wigginton JE, Cutler DJ, Abecasis GR . A note on exact tests of Hardy–Weinberg equilibrium. Am J Hum Genet 2005; 76: 887–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wigginton JE, Abecasis GR . PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445–3447.

    Article  CAS  PubMed  Google Scholar 

  50. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  PubMed  Google Scholar 

  51. Fulker DW, Cherny SS, Sham PC, Hewitt JK . Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet 1999; 64: 259–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    Article  CAS  PubMed  Google Scholar 

  53. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  54. Skol AD, Scott LJ, Abecasis GR, Boehnke M . Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209–213.

    Article  CAS  PubMed  Google Scholar 

  55. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007; 357: 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Osen-Sand A, Catsicas M, Staple JK, Jones KA, Ayala G, Knowles J et al. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 1993; 364: 445–448.

    Article  CAS  PubMed  Google Scholar 

  57. Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF . Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 2003; 8: 309–315.

    Article  CAS  PubMed  Google Scholar 

  58. Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R et al. The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 2005; 10: 998–1005, 1973.

    Article  CAS  PubMed  Google Scholar 

  59. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349–356.

    Article  PubMed  Google Scholar 

  60. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J . Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 2001; 12: 3257–3262.

    Article  CAS  PubMed  Google Scholar 

  61. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B . Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 2006; 8: 133–143.

    Article  CAS  PubMed  Google Scholar 

  62. Gosso MF, de Geus EJ, van Belzen MJ, Polderman TJ, Heutink P, Boomsma DI et al. The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 2006; 11: 878–886.

    Article  CAS  PubMed  Google Scholar 

  63. Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M . Cadherin regulates dendritic spine morphogenesis. Neuron 2002; 35: 77–89.

    Article  CAS  PubMed  Google Scholar 

  64. Bozdagi O, Valcin M, Poskanzer K, Tanaka H, Benson DL . Temporally distinct demands for classic cadherins in synapse formation and maturation. Mol Cell Neurosci 2004; 27: 509–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirano S, Suzuki ST, Redies C . The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci 2003; 8: d306–d355.

    Article  CAS  PubMed  Google Scholar 

  66. Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Muller U . The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci USA 2002; 99: 14946–14951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takeuchi T, Misaki A, Liang SB, Tachibana A, Hayashi N, Sonobe H et al. Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem 2000; 74: 1489–1497.

    Article  CAS  PubMed  Google Scholar 

  68. Bakkaloglu B, O'Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 2008; 82: 165–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 2008; 82: 160–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 2008; 82: 150–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, Faas BH et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 2008; 13: 261–266.

    Article  CAS  PubMed  Google Scholar 

  72. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP et al. Positional cloning of the mouse circadian clock gene. Cell 1997; 89: 641–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Steeves TD, King DP, Zhao Y, Sangoram AM, Du F, Bowcock AM et al. Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Genomics 1999; 57: 189–200.

    Article  CAS  PubMed  Google Scholar 

  74. DeYoung CG, Hasher L, Djikic M, Criger B, Peterson JB . Morning people are stable people: circadian rhythm and the higher-order factors of the Big Five. Pers Indiv Differ 2007; 43: 267–276.

    Article  Google Scholar 

  75. Terracciano A, McCrae RR, Brant LJ, Costa Jr PT . Hierarchical linear modeling analyses of NEO-PI-R scales in the Baltimore Longitudinal Study of Aging. Psychol Aging 2005; 20: 493–506.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Paine SJ, Gander PH, Travier N . The epidemiology of morningness/eveningness: influence of age, gender, ethnicity, and socioeconomic factors in adults (30–49 years). J Biol Rhythms 2006; 21: 68–76.

    Article  PubMed  Google Scholar 

  77. Mishima K, Tozawa T, Satoh K, Saitoh H, Mishima Y . The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 101–104.

    Article  Google Scholar 

  78. Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B et al. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 631–635.

    Article  CAS  Google Scholar 

  79. Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 2003; 123: 23–26.

    Article  Google Scholar 

  80. Takao T, Tachikawa H, Kawanishi Y, Mizukami K, Asada T . CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: a preliminary study. Eur Neuropsychopharmacol 2007; 17: 273–276.

    Article  CAS  PubMed  Google Scholar 

  81. Tortorella A, Monteleone P, Martiadis V, Perris F, Maj M . The 3111T/C polymorphism of the CLOCK gene confers a predisposition to a lifetime lower body weight in patients with anorexia nervosa and bulimia nervosa: a preliminary study. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 992–995.

    Article  CAS  Google Scholar 

  82. Altafaj X, Dierssen M, Baamonde C, Marti E, Visa J, Guimera J et al. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum Mol Genet 2001; 10: 1915–1923.

    Article  CAS  PubMed  Google Scholar 

  83. Dowjat WK, Adayev T, Kuchna I, Nowicki K, Palminiello S, Hwang YW et al. Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 2007; 413: 77–81.

    Article  CAS  PubMed  Google Scholar 

  84. Kimura R, Kamino K, Yamamoto M, Nuripa A, Kida T, Kazui H et al. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum Mol Genet 2007; 16: 15–23.

    Article  CAS  PubMed  Google Scholar 

  85. Dawson DV, Welsh-Bohmer KA, Siegler IC . Premorbid personality predicts level of rated personality change in patients with Alzheimer disease. Alzheimer Dis Assoc Disord 2000; 14: 11–19.

    Article  CAS  PubMed  Google Scholar 

  86. Wilson RS, Schneider JA, Arnold SE, Bienias JL, Bennett DA . Conscientiousness and the incidence of Alzheimer disease and mild cognitive impairment. Arch Gen Psychiatry 2007; 64: 1204–1212.

    Article  PubMed  Google Scholar 

  87. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13: 558–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Perneger TV . What's wrong with Bonferroni adjustments. BMJ 1998; 316: 1236–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 2008; 40: 584–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moonesinghe R, Khoury MJ, Liu T, Ioannidis JP . Required sample size and nonreplicability thresholds for heterogeneous genetic associations. Proc Natl Acad Sci USA 2008; 105: 617–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sen S, Burmeister M, Ghosh D . Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am J Med Genet B Neuropsychiatr Genet 2004; 127: 85–89.

    Article  Google Scholar 

  93. Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994; 51: 8–19.

    Article  CAS  PubMed  Google Scholar 

  94. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE . Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 617–627.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Costa Jr PT, Widiger TA (eds) Personality Disorders and the Five-Factor Model of Personality. American Psychological Association: Washington, DC, 2002.

    Book  Google Scholar 

Download references

Acknowledgements

We thank the individuals who participated in this study; the SardiNIA team thanks Monsignore Piseddu (Bishop of Ogliastra), the mayors of the four Sardinian towns (Lanusei, Ilbono, Arzana and Elini), and the head of the Public Health Unit ASL4 for cooperation. We thank Professor Antonio Cao for his leadership of the SardiNIA project. This research was supported by the Intramural Research Program of the NIH, National Institute on Aging. Dr Margit Burmeister's laboratory was supported by the National Institute of Health NIH—NIMH R21 MH070793 and the National Alliance for Research on Schizophrenia and Depression (NARSAD), Independent Investigator Award (MB) and Young Investigator Award (SV).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Terracciano or P T Costa Jr.

Ethics declarations

Competing interests

Paul T Costa Jr receives royalties from the Revised NEO Personality Inventory. The authors declare that they have no other competing interests.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terracciano, A., Sanna, S., Uda, M. et al. Genome-wide association scan for five major dimensions of personality. Mol Psychiatry 15, 647–656 (2010). https://doi.org/10.1038/mp.2008.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.113

Keywords

This article is cited by

Search

Quick links