Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interferon-α effects on diurnal hypothalamic–pituitary–adrenal axis activity: relationship with proinflammatory cytokines and behavior

Abstract

Interferon (IFN)-α has been used to investigate pathways by which innate immune cytokines influence the brain and behavior. Accordingly, the impact of IFN-α on diurnal secretion of hypothalamic–pituitary–adrenal (HPA) axis hormones was assessed in 33 patients eligible for treatment with IFN-α plus ribavirin for hepatitis C. In addition, the relationship between IFN-α-induced HPA axis changes and proinflammatory cytokines and behavior was examined. Plasma ACTH and cortisol as well as tumor necrosis factor (TNF)-α, interleukin-6 and their soluble receptors, were measured hourly between 0900 and 2100 hours at baseline and following approximately 12 weeks of either no treatment (n=13) or treatment with IFN-α/ribavirin (n=20). Plasma IFN-α was also measured at each visit. Depression and fatigue were assessed using the Montgomery–Asberg depression rating scale and the multidimensional fatigue inventory. Compared to no treatment, IFN-α/ribavirin administration was associated with significant flattening of the diurnal ACTH and cortisol slope and increased evening plasma ACTH and cortisol concentrations. Flattening of the cortisol slope and increases in evening cortisol were correlated with increases in depression (r=0.38, P<0.05 and r=0.36, P<0.05, respectively) and fatigue (r=0.43, P<0.05 and r=0.49, P<0.01, respectively). No relationship was found between immune and HPA axis measures, although increases in plasma IFN-α, TNF-α and soluble TNF-α receptor2 were independently correlated with behavioral endpoints. These data indicate that chronic exposure to innate immune cytokines may contribute to the altered diurnal HPA axis activity and behavior found in medically ill individuals. However, given the lack of correlation between HPA axis and immune measures, the mechanism by which chronic cytokine exposure influences HPA axis function remains to be determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry 2005; 58: 175–189.

    Article  Google Scholar 

  2. Raison CL, Capuron L, Miller AH . Cytokines sing the blues: inflammation and the pathogenesis of major depression. Trend Immun 2006; 27: 24–31.

    Article  CAS  Google Scholar 

  3. Quan N, Stern EL, Whiteside MB, Herkenham M . Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J Neuroimmunol 1999; 93: 72–80.

    Article  CAS  Google Scholar 

  4. Van Dam AM, Bol JG, Gaykema RP, Goehler LE, Maier SF, Watkins LR et al. Vagotomy does not inhibit high dose lipopolysaccharide-induced interleukin-1beta immunoreactivity in rat brain and pituitary gland. Neurosci Lett 2000; 285: 169–172.

    Article  CAS  Google Scholar 

  5. Yirmiya R . Endotoxin produces a depressive-like episode in rats. Brain Res 1996; 711: 163–174.

    Article  CAS  Google Scholar 

  6. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 2001; 58: 445–452.

    Article  CAS  Google Scholar 

  7. Spath-Schwalbe E, Hansen K, Schmidt F, Schrezenmeier H, Marshall L, Burger K et al. Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab 1998; 83: 1573–1579.

    CAS  PubMed  Google Scholar 

  8. Bluthe RM, Dantzer R, Kelley KW . Effects of interleukin-1 receptor antagonist on the behavioral effects of lipopolysaccharide in rat. Brain Res 1992; 573: 318–320.

    CAS  Google Scholar 

  9. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 2006; 367: 29–35.

    Article  CAS  Google Scholar 

  10. Gisslinger H, Svoboda T, Clodi M, Gilly B, Ludwig H, Havelec L et al. Interferon-alpha stimulates the hypothalamic-pituitary-adrenal axis in vivo and in vitro. Neuroendocrinol 1993; 57: 489–495.

    Article  CAS  Google Scholar 

  11. Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH . Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am J Psychiatry 2003; 160: 1342–1345.

    Article  Google Scholar 

  12. Muller H, Hammes E, Hiemke C, Hess G . Interferon-alpha-2-induced stimulation of ACTH and cortisol secretion in man. Neuroendocrinol 1991; 54: 499–503.

    Article  CAS  Google Scholar 

  13. Shimizu H, Ohtani K, Sato N, Nagamine T, Mori M . Increase in serum interleukin-6, plasma ACTH and serum cortisol levels after systemic interferon-alpha administration. Endocr J 1995; 42: 551–556.

    Article  CAS  Google Scholar 

  14. Maes M, Scharpe S, Meltzer HY, Okayli G, Bosmans E, D′Hondt P et al. Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res 1994; 54: 143–160.

    Article  CAS  Google Scholar 

  15. Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M et al. Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 2002; 22: 86–90.

    Article  CAS  Google Scholar 

  16. Taylor JL, Grossberg SE . The effects of interferon-alpha on the production and action of other cytokines. Semin Oncol 1998; 25: 23–29.

    CAS  PubMed  Google Scholar 

  17. Wichers MC, Kenis G, Koek GH, Robaeys G, Nicolson NA, Maes M . Interferon-alpha-induced depressive symptoms are related to changes in the cytokine network but not to cortisol. J Psychosom Res 2007; 62: 207–214.

    Article  Google Scholar 

  18. Raison CL, Demetrashvili M, Capuron L, Miller AH . Neuropsychiatric side effects of interferon-alpha: recognition and management. CNS Drugs 2005; 19: 1–19.

    Article  Google Scholar 

  19. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacol 2002; 26: 643–652.

    Article  CAS  Google Scholar 

  20. Maddock C, Landau S, Barry K, Maulayah P, Hotopf M, Cleare AJ et al. Psychopathological symptoms during interferon-alpha and ribavirin treatment: effects on virologic response. Mol Psychiatry 2005; 10: 332–333.

    Article  CAS  Google Scholar 

  21. Maddock C, Baita A, Orru MG, Sitzia R, Costa A, Muntoni E et al. Psychopharmacological treatment of depression, anxiety, irritability and insomnia in patients receiving interferon-alpha: a prospective case series and a discussion of biological mechanisms. J Psychopharmacol 2004; 18: 41–46.

    Article  CAS  Google Scholar 

  22. Friebe A, Schwarz MJ, Schmid-Wendtner M, Volkenandt M, Schmidt F, Horn M et al. Pretreatment levels of sTNF-R1 and sIL-6R are associated with a higher vulnerability for IFN-alpha-induced depressive symptoms in patients with malignant melanoma. J Immunother 2007; 30: 333–337.

    Article  CAS  Google Scholar 

  23. Matthews K, Schwartz J, Cohen S, Seeman T . Diurnal cortisol decline is related to coronary calcification: CARDIA study. Psychosom Med 2006; 68: 657–661.

    Article  CAS  Google Scholar 

  24. Ticher A, Haus E, Ron IG, Sackett-Lundeen L, Ashkenazi IE . The pattern of hormonal circadian time structure (acrophase) as an assessor of breast-cancer risk. Int J Cancer 1996; 65: 591–593.

    Article  CAS  Google Scholar 

  25. Rosmond R, Bjorntorp P . The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med 2000; 247: 188–197.

    Article  CAS  Google Scholar 

  26. Abercrombie HC, Giese-Davis J, Sephton S, Epel ES, Turner-Cobb JM, Spiegel D . Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuroendocrinol 2004; 29: 1082–1092.

    Article  CAS  Google Scholar 

  27. Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D . Diurnal cortisol rhythm as a predictor of breast cancer survival. J Nat Cancer Inst 2000; 92: 994–1000.

    Article  CAS  Google Scholar 

  28. Rich T, Innominato PF, Boerner J, Mormont MC, Iacobelli S, Baron B et al. Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity patterns in patients with metastatic colorectal cancer. Clin Cancer Res 2005; 11: 1757–1764.

    Article  CAS  Google Scholar 

  29. Nijm J, Kristenson M, Olsson AG, Jonasson L . Impaired cortisol response to acute stressors in patients with coronary disease. Implications for inflammatory activity. J Intern Med 2007; 262: 375–384.

    Article  CAS  Google Scholar 

  30. Deuschle M, Schweiger U, Weber B, Gotthardt U, Korner A, Schmider J et al. Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. J Clin Endocrinol Metab 1997; 82: 234–238.

    Article  CAS  Google Scholar 

  31. Giese-Davis J, Sephton SE, Abercrombie HC, Duran RE, Spiegel D . Repression and high anxiety are associated with aberrant diurnal cortisol rhythms in women with metastatic breast cancer. Health Psychol 2004; 23: 645–650.

    Article  Google Scholar 

  32. Bower JE, Ganz PA, Dickerson SS, Petersen L, Aziz N, Fahey JL . Diurnal cortisol rhythm and fatigue in breast cancer survivors. Psychoneuroendocrinol 2005; 30: 92–100.

    Article  CAS  Google Scholar 

  33. Folstein MF, Folstein SE, McHugh PR . ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–198.

    Article  CAS  Google Scholar 

  34. First MB, Spitzer RL, Gibbon M, Williams JB . Structured Clinical Interview for DSM-IV. American Psychiatric Press: Washington DC, 1997.

    Google Scholar 

  35. Majer M, Wellberg LAM, Capuron L, Pagnoni G, Raison CL, Miller AH . IFN-alpha-induced motor slowing is associated with increased depression and fatigue in patients with chronic hepatitis C. Brain Behav Immun 2008 (in press).

  36. Montgomery SA, Asberg M . A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–389.

    Article  CAS  Google Scholar 

  37. Smets EM, Garssen B, Bonke B, De Haes JC . The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res 1995; 39: 315–325.

    Article  CAS  Google Scholar 

  38. Stein KD, Jacobsen PB, Blanchard CM, Thors C . Further validation of the multidimensional fatigue symptom inventory-short form. J Pain Sympt Manage 2004; 27: 14–23.

    Article  Google Scholar 

  39. Wichers MC, Koek GH, Robaeys G, Praamstra AJ, Maes M . Early increase in vegetative symptoms predicts IFN-alpha-induced cognitive-depressive changes. Psychol Med 2005; 35: 433–441.

    Article  CAS  Google Scholar 

  40. Stone AA, Schwartz JE, Smyth J, Kirschbaum C, Cohen S, Hellhammer D et al. Individual differences in the diurnal cycle of salivary free cortisol: a replication of flattened cycles for some individuals. Psychoneuroendocrinol 2001; 26: 295–306.

    Article  CAS  Google Scholar 

  41. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 2005; 90: 2522–2530.

    Article  CAS  Google Scholar 

  42. Adam EK, Gunnar MR . Relationship functioning and home and work demands predict individual differences in diurnal cortisol patterns in women. Psychoneuroendocrinol 2001; 26: 189–208.

    Article  CAS  Google Scholar 

  43. Polk DE, Cohen S, Doyle WJ, Skoner DP, Kirschbaum C . State and trait affect as predictors of salivary cortisol in healthy adults. Psychoneuroendocrinol 2005; 30: 261–272.

    Article  CAS  Google Scholar 

  44. Barnett RC, Steptoe A, Gareis KC . Marital-role quality and stress-related psychobiological indicators. Ann Behav Med 2005; 30: 36–43.

    Article  Google Scholar 

  45. Van Cauter E, Leproult R, Plat L . Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000; 284: 861–868.

    Article  CAS  Google Scholar 

  46. Plat L, Leproult R, L′Hermite-Baleriaux M, Fery F, Mockel J, Polonsky KS et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning. J Clin Endocrinol Metab 1999; 84: 3082–3092.

    CAS  PubMed  Google Scholar 

  47. Joynt KE, Whellan DJ, O’Connor CM . Depression and cardiovascular disease: mechanisms of interaction. Biol Psychiatry 2003; 54: 248–261.

    Article  Google Scholar 

  48. Willerson JT, Ridker PM . Inflammation as a cardiovascular risk factor. Circulation 2004; 109: II2–I10.

    PubMed  Google Scholar 

  49. Ridker PM, Buring JE, Cook NR, Rifai N . C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 2003; 107: 391–397.

    Article  Google Scholar 

  50. Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352: 20–28.

    Article  CAS  Google Scholar 

  51. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM . C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–334.

    Article  CAS  Google Scholar 

  52. Pitsavos C, Tampourlou M, Panagiotakos DB, Skoumas Y, Chrysohoou C . Association between low-grade system inflammation and type 2 diabetes mellitus among men and women from the ATTICA Study. Rev Diab Stud 2007; 4: 98–104.

    Article  Google Scholar 

  53. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G . Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006; 72: 1605–1621.

    Article  CAS  Google Scholar 

  54. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W . Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 1987; 238: 522–524.

    Article  CAS  Google Scholar 

  55. Besedovsky HO, del Rey A . Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 1996; 17: 64–102.

    Article  CAS  Google Scholar 

  56. Pace TW, Hu F, Miller AH . Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 2007; 21: 9–19.

    Article  CAS  Google Scholar 

  57. Pariante CM, Pearce BD, Pisell TL, Sanchez CI, Po C, Su C et al. The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinol 1999; 140: 4359–4366.

    Article  CAS  Google Scholar 

  58. Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S . Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 2006; 166: 1756–1762.

    Article  CAS  Google Scholar 

  59. Opp MR, Obal Jr F, Krueger JM . Interleukin 1 alters rat sleep: temporal and dose-related effects. Am J Physiol 1991; 260: R52–R58.

    CAS  PubMed  Google Scholar 

  60. Spath-Schwalbe E, Lange T, Perras B, Fehm HL, Born J . Interferon-alpha acutely impairs sleep in healthy humans. Cytokine 2000; 12: 518–521.

    Article  CAS  Google Scholar 

  61. Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 2004; 89: 2119–2126.

    Article  CAS  Google Scholar 

  62. Redwine L, Hauger RL, Gillin JC, Irwin M . Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J Clin Endocrinol Metab 2000; 85: 3597–3603.

    CAS  PubMed  Google Scholar 

  63. Spiegel K, Leproult R, Van Cauter E . Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354: 1435–1439.

    Article  CAS  Google Scholar 

  64. Ogawa Y, Kanbyashi T, Yano T, Sawaishi Y, Saito Y, Shimizu T . Cerebrospinal fluid-orexin decreases during intraventricular a-interferon therapy of patients with subacute sclerosing panencephalitis. Sleep Biol Rhyth 2003; 1: 143–145.

    Article  Google Scholar 

  65. Ohdo S, Koyanagi S, Suyama H, Higuchi S, Aramaki H . Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nature Med 2001; 7: 356–360.

    Article  CAS  Google Scholar 

  66. Fernandez-Real JM, Lainez B, Vendrell J, Rigla M, Castro A, Penarroja G et al. Shedding of TNF-alpha receptors, blood pressure, and insulin sensitivity in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2002; 282: E952–E959.

    Article  CAS  Google Scholar 

  67. Bower JE, Ganz PA, Aziz N, Fahey JL . Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom Med 2002; 64: 604–611.

    Article  Google Scholar 

  68. Dome P, Teleki Z, Rihmer Z, Peter L, Dobos J, Kenessey I et al. Circulating endothelial progenitor cells and depression: a possible novel link between heart and soul. Mol Psychiatry 2008; epub: 1–9.

    Google Scholar 

  69. Aderka D, Engelmann H, Maor Y, Brakebusch C, Wallach D . Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med 1992; 175: 323–329.

    Article  CAS  Google Scholar 

  70. Schroder J, Stuber F, Gallati H, Schade FU, Kremer B . Pattern of soluble TNF receptors I and II in sepsis. Infection 1995; 23: 143–148.

    Article  CAS  Google Scholar 

  71. Ice GH . Factors influencing cortisol level and slope among community dwelling older adults in Minnesota. J Cross Cult Gerontol 2005; 20: 91–108.

    Article  Google Scholar 

  72. Daniel M, Moore DS, Decker S, Belton L, DeVellis B, Doolen A et al. Associations among education, cortisol rhythm, and BMI in blue-collar women. Obesity 2006; 14: 327–335.

    Article  CAS  Google Scholar 

  73. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS et al. Paroxetine for the prevention of depression induced by high-dose interferon alpha. N Engl J Med 2001; 344: 961–966.

    Article  CAS  Google Scholar 

  74. Licinio J, Mantzoros C, Negrao AB, Cizza G, Wong ML, Bongiorno PB et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nature Med 1997; 3: 575–579.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the National Institute of Mental Health (K05 MH069124, K23 MH064619, R01 MH070553 and R01 HL073921) an NIH/NCRR General Clinical Research Center grant (M01 RR00039) and the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C L Raison.

Ethics declarations

Competing interests

CL Raison has served as a speaker for Lilly and Wyeth and as a consultant or an advisory board member for Schering-Plough, Wyeth, Lilly and Centocor; AS Borisov, BJ Woolwine, B Massung and G Vogt have nothing to declare; AH Miller has served as a consultant or an advisory board member for Schering-Plough and Centocor, and has received research funding from Janssen/Johnson and Johnson, GlaxoSmithKline and Schering-Plough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raison, C., Borisov, A., Woolwine, B. et al. Interferon-α effects on diurnal hypothalamic–pituitary–adrenal axis activity: relationship with proinflammatory cytokines and behavior. Mol Psychiatry 15, 535–547 (2010). https://doi.org/10.1038/mp.2008.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.58

Keywords

This article is cited by

Search

Quick links