Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mechanisms of Drug Action
  • Published:

The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation

Abstract

Tianeptine is a clinically used antidepressant that has drawn much attention, because this compound challenges traditional monoaminergic hypotheses of depression. It is now acknowledged that the antidepressant actions of tianeptine, together with its remarkable clinical tolerance, can be attributed to its particular neurobiological properties. The involvement of glutamate in the mechanism of action of the antidepressant tianeptine is consistent with a well-developed preclinical literature demonstrating the key function of glutamate in the mechanism of altered neuroplasticity that underlies the symptoms of depression. This article reviews the latest evidence on tianeptine's mechanism of action with a focus on the glutamatergic system, which could provide a key pathway for its antidepressant action. Converging lines of evidences demonstrate actions of tianeptine on the glutamatergic system, and therefore offer new insights into how tianeptine may be useful in the treatment of depressive disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Duman RS, Malberg J, Thome J . Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46: 1181–1191.

    Article  CAS  PubMed  Google Scholar 

  2. Manji HK, Duman RS . Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001; 35: 5–49.

    CAS  PubMed  Google Scholar 

  3. Pittenger C, Duman RS . Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008; 33: 88–109.

    Article  CAS  PubMed  Google Scholar 

  4. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  5. Manji HK, Gottesman II, Gould TD . Signal transduction and genes-to-behaviors pathways in psychiatric diseases. Sci STKE 2003; 2003: e49.

    Google Scholar 

  6. Sheline YI . Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54: 338–352.

    Article  PubMed  Google Scholar 

  7. Kasper S, McEwen BS . Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs 2008; 22: 15–26.

    Article  CAS  PubMed  Google Scholar 

  8. Svenningsson P, Bateup H, Qi H, Takamiya K, Huganir RL, Spedding M et al. Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. Eur J Neurosci 2007; 26: 3509–3517.

    Article  PubMed  Google Scholar 

  9. Qi H, Mailliet F, Spedding M, Rocher C, Zhang X, Delagrange P et al. Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation. Neuropharmacology 2009; 56: 37–46.

    Article  CAS  PubMed  Google Scholar 

  10. Bergink V, van Megen HJ, Westenberg HG . Glutamate and anxiety. Eur Neuropsychopharmacol 2004; 14: 175–183.

    Article  CAS  PubMed  Google Scholar 

  11. Lowy MT, Wittenberg L, Yamamoto BK . Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 1995; 65: 268–274.

    Article  CAS  PubMed  Google Scholar 

  12. Paul IA, Skolnick P . Glutamate and depression: clinical and preclinical studies. Ann NY Acad Sci 2003; 1003: 250–272.

    Article  CAS  PubMed  Google Scholar 

  13. Sanacora G, Rothman DL, Mason G, Krystal JH . Clinical studies implementing glutamate neurotransmission in mood disorders. Ann NY Acad Sci 2003; 1003: 292–308.

    Article  CAS  PubMed  Google Scholar 

  14. Skolnick P, Legutko B, Li X, Bymaster FP . Current perspectives on the development of non-biogenic amine-based antidepressants. Pharmacol Res 2001; 43: 411–423.

    Article  CAS  PubMed  Google Scholar 

  15. Zarate Jr CA, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J et al. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann NY Acad Sci 2003; 1003: 273–291.

    Article  CAS  PubMed  Google Scholar 

  16. Curzon G, Kennett GA, Sarna GS, Whitton PS . The effects of tianeptine and other antidepressants on a rat model of depression. Br J Psychiatry Suppl 1992; 160: 51–55.

    Article  Google Scholar 

  17. Thiebot MH, Martin P, Puech AJ . Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiatry Suppl 1992; 160: 44–50.

    Article  Google Scholar 

  18. Kelly JP, Leonard BE . The effect of tianeptine and sertraline in three animal models of depression. Neuropharmacology 1994; 33: 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  19. Wagstaff AJ, Ormrod D, Spencer CM . Tianeptine: a review of its use in depressive disorders. CNS Drugs 2001; 15: 231–259.

    Article  CAS  PubMed  Google Scholar 

  20. McEwen BS, Olie JP . Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 2005; 10: 525–537.

    Article  CAS  PubMed  Google Scholar 

  21. McEwen BS, Magarinos AM, Reagan LP . Structural plasticity and tianeptine: cellular and molecular targets. Eur Psychiatry 2002; 17 (Suppl 3): 318–330.

    Article  PubMed  Google Scholar 

  22. Costa e Silva JA, Ruschel SI, Caetano D, Rocha FL, da Jr SL, Arruda S et al. Placebo-controlled study of tianeptine in major depressive episodes. Neuropsychobiology 1997; 35: 24–29.

    Article  CAS  PubMed  Google Scholar 

  23. Loo H, Saiz-Ruiz J, Costa e Silva JACE, Ansseau M, Herrington R, Vaz-Serra A et al. Efficacy and safety of tianeptine in the treatment of depressive disorders in comparison with fluoxetine. J Affect Disord 1999; 56: 109–118.

    Article  CAS  PubMed  Google Scholar 

  24. Lepine JP, Altamura C, Ansseau M, Gutierrez JL, Bitter I, Lader M et al. Tianeptine and paroxetine in major depressive disorder, with a special focus on the anxious component in depression: an international, 6-week double-blind study dagger. Hum Psychopharmacol 2001; 16: 219–227.

    Article  CAS  PubMed  Google Scholar 

  25. Novotny V, Faltus F . Tianeptine and fluoxetine in major depression: a 6-week randomised double-blind study. Hum Psychopharmacol 2002; 17: 299–303.

    Article  CAS  PubMed  Google Scholar 

  26. Szadoczky E, Furedi J . [Efficacy and acceptability of tianeptine and sertraline in the acute treatment phase of depression]. Encephale 2002; 28: 343–349.

    CAS  PubMed  Google Scholar 

  27. Waintraub L, Septien L, Azoulay P . Efficacy and safety of tianeptine in major depression: evidence from a 3-month controlled clinical trial versus paroxetine. CNS Drugs 2002; 16: 65–75.

    Article  CAS  PubMed  Google Scholar 

  28. Nickel T, Sonntag A, Schill J, Zobel AW, Ackl N, Brunnauer A et al. Clinical and neurobiological effects of tianeptine and paroxetine in major depression. J Clin Psychopharmacol 2003; 23: 155–168.

    Article  CAS  PubMed  Google Scholar 

  29. Olie JP, Bayle F, Kasper S . [A meta-analysis of randomized controlled trials of tianeptine versus SSRI in the short-term treatment of depression]. Encephale 2003; 29: 322–328.

    PubMed  Google Scholar 

  30. Kasper S, Olie JP . A meta-analysis of randomized controlled trials of tianeptine versus SSRI in the short-term treatment of depression. Eur Psychiatry 2002; 17 (Suppl 3): 331–340.

    Article  PubMed  Google Scholar 

  31. Novotny V, Faltus F . First signs of improvement with tianeptine in the treatment of depression: an analysis of a double-blind study versus fluoxetine. Eur Neuropsychopharmacol 2003; 13 (Suppl 4): S230. Ref type: abstract.

    Article  Google Scholar 

  32. Loo H, Deniker P . Position of tianeptine among antidepressive chemotherapies. Clin Neuropharmacol 1988; 11 (Suppl 2): S97–S102.

    PubMed  Google Scholar 

  33. Guelfi JD, Pichot P, Dreyfus JF . Efficacy of tianeptine in anxious-depressed patients: results of a controlled multicenter trial versus amitriptyline. Neuropsychobiology 1989; 22: 41–48.

    Article  CAS  PubMed  Google Scholar 

  34. Invernizzi G, Aguglia E, Bertolino A, Casacchia M, Ciani N, Marchesi GF et al. The efficacy and safety of tianeptine in the treatment of depressive disorder: results of a controlled double-blind multicentre study vs amitriptyline. Neuropsychobiology 1994; 30: 85–93.

    Article  CAS  PubMed  Google Scholar 

  35. Brion S, Audrain S, De Bodinat C . [Major depressive episodes in patients over 70 years of age. Evaluation of the efficiency and acceptability of tianeptine and mianserin]. Presse Med 1996; 25: 461–468.

    CAS  PubMed  Google Scholar 

  36. Ridout F, Hindmarch I . Effects of tianeptine and mianserin on car driving skills. Psychopharmacology (Berl) 2001; 154: 356–361.

    Article  CAS  Google Scholar 

  37. Wilde MI, Benfield P . Tianeptine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depression and coexisting anxiety and depression. Drugs 1995; 49: 411–439.

    Article  CAS  PubMed  Google Scholar 

  38. Atmaca M, Kuloglu M, Tezcan E, Buyukbayram A . Switching to tianeptine in patients with antidepressant-induced sexual dysfunction. Hum Psychopharmacol 2003; 18: 277–280.

    Article  PubMed  Google Scholar 

  39. Bonierbale M, Lancon C, Tignol J . The ELIXIR study: evaluation of sexual dysfunction in 4557 depressed patients in France. Curr Med Res Opin 2003; 19: 114–124.

    Article  PubMed  Google Scholar 

  40. Magarinos AM, Deslandes A, McEwen BS . Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 1999; 371: 113–122.

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS . Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 1992; 222: 157–162.

    Article  CAS  PubMed  Google Scholar 

  42. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003; 100: 1387–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajkowska G . Cell pathology in mood disorders. Semin Clin Neuropsychiatry 2002; 7: 281–292.

    Article  PubMed  Google Scholar 

  44. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 2001; 98: 12796–12801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, Wouda J et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 2001; 158: 453–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC . Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry 2006; 59: 244–251.

    Article  CAS  PubMed  Google Scholar 

  47. Reagan LP, Hendry RM, Reznikov LR, Piroli GG, Wood GE, McEwen BS et al. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala. Eur J Pharmacol 2007; 565: 68–75.

    Article  CAS  PubMed  Google Scholar 

  48. Petrovich GD, Canteras NS, Swanson LW . Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev 2001; 38: 247–289.

    Article  CAS  PubMed  Google Scholar 

  49. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S . Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002; 22: 6810–6818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McEwen BS, Chattarji S . Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol 2004; 14 (Suppl 5): S497–S502.

    Article  CAS  PubMed  Google Scholar 

  51. Conrad CD, LeDoux JE, Magarinos AM, McEwen BS . Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 1999; 113: 902–913.

    Article  CAS  PubMed  Google Scholar 

  52. Wood GE, Reagan LP, Grillo CA, Piroli GG, McEwen BS . Chronic antidepressant treatment with tianeptine prevents the stress-induced potentiation of aggressive conflicts. Soc Neurosci 2003; 217: 7.

    Google Scholar 

  53. Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, LeDoux JE . The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry 2004; 55: 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  54. Wood GE, Norris EH, Waters E, Stoldt JT, McEwen BS . Chronic immobilization stress alters aspects of emotionality and associative learning in the rat. Behav Neurosci 2008; 122: 282–292.

    Article  PubMed  Google Scholar 

  55. Diamond DM, Campbell A, Park CR, Vouimba RM . Preclinical research on stress, memory, and the brain in the development of pharmacotherapy for depression. Eur Neuropsychopharmacol 2004; 14 (Suppl 5): S491–S495.

    Article  CAS  PubMed  Google Scholar 

  56. Vouimba RM, Munoz C, Diamond DM . Differential effects of predator stress and the antidepressant tianeptine on physiological plasticity in the hippocampus and basolateral amygdala. Stress 2006; 9: 29–40.

    Article  CAS  PubMed  Google Scholar 

  57. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J . Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 2007; 25: 3109–3114.

    Article  PubMed  Google Scholar 

  58. Shakesby AC, Anwyl R, Rowan MJ . Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci 2002; 22: 3638–3644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Whitton PS, Sarna GS, Datla KP, Curzon G . Effects of tianeptine on stress-induced behavioural deficits and 5-HT dependent behaviour. Psychopharmacology (Berl) 1991; 104: 81–85.

    Article  CAS  Google Scholar 

  60. Rocher C, Spedding M, Munoz C, Jay TM . Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 2004; 14: 224–229.

    Article  PubMed  Google Scholar 

  61. File SE, Andrews N, al Farhan M . Anxiogenic responses of rats on withdrawal from chronic ethanol treatment: effects of tianeptine. Alcohol Alcohol 1993; 28: 281–286.

    CAS  PubMed  Google Scholar 

  62. Zethof TJ, van der Heyden JA, Tolboom JT, Olivier B . Stress-induced hyperthermia as a putative anxiety model. Eur J Pharmacol 1995; 294: 125–135.

    Article  CAS  PubMed  Google Scholar 

  63. Lucassen PJ, Fuchs E, Czeh B . Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004; 55: 789–796.

    Article  CAS  PubMed  Google Scholar 

  64. Lucassen PJ, Vollmann-Honsdorf GK, Gleisberg M, Czeh B, De Kloet ER, Fuchs E . Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci 2001; 14: 161–166.

    Article  CAS  PubMed  Google Scholar 

  65. Castanon N, Bluthe RM, Dantzer R . Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1beta in the rat. Psychopharmacology (Berl) 2001; 154: 50–60.

    Article  CAS  Google Scholar 

  66. Castanon N, Konsman JP, Medina C, Chauvet N, Dantzer R . Chronic treatment with the antidepressant tianeptine attenuates lipopolysaccharide-induced Fos expression in the rat paraventricular nucleus and HPA axis activation. Psychoneuroendocrinology 2003; 28: 19–34.

    Article  CAS  PubMed  Google Scholar 

  67. Castanon N, Medina C, Mormede C, Dantzer R . Chronic administration of tianeptine balances lipopolysaccharide-induced expression of cytokines in the spleen and hypothalamus of rats. Psychoneuroendocrinology 2004; 29: 778–790.

    Article  CAS  PubMed  Google Scholar 

  68. Plaisant F, Dommergues MA, Spedding M, Cecchelli R, Brillault J, Kato G et al. Neuroprotective properties of tianeptine: interactions with cytokines. Neuropharmacology 2003; 44: 801–809.

    Article  CAS  PubMed  Google Scholar 

  69. Zihl J, Gron G, Brunnauer A . Cognitive deficits in schizophrenia and affective disorders: evidence for a final common pathway disorder. Acta Psychiatr Scand 1998; 97: 351–357.

    Article  CAS  PubMed  Google Scholar 

  70. Luine V, Villegas M, Martinez C, McEwen BS . Repeated stress causes reversible impairments of spatial memory performance. Brain Res 1994; 639: 167–170.

    Article  CAS  PubMed  Google Scholar 

  71. Conrad CD, Galea LA, Kuroda Y, McEwen BS . Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 1996; 110: 1321–1334.

    Article  CAS  PubMed  Google Scholar 

  72. Jaffard R, Mocaer E, Poignant JC, Micheau J, Marighetto A, Meunier M et al. Effects of tianeptine on spontaneous alternation, simple and concurrent spatial discrimination learning and on alcohol-induced alternation deficits in mice. Behav Pharmacol 1991; 2: 37–46.

    Article  PubMed  Google Scholar 

  73. Campbell AM, Park CR, Zoladz PR, Munoz C, Fleshner M, Diamond DM . Pre-training administration of tianeptine, but not propranolol, protects hippocampus-dependent memory from being impaired by predator stress. Eur Neuropsychopharmacol 2008; 18: 87–98.

    Article  CAS  PubMed  Google Scholar 

  74. Delagrange P, Bouyer JJ, Montaron MF, Durand C, Mocaer E, Rougeul A . Action of tianeptine on focalization of attention in cat. Psychopharmacology (Berl) 1990; 102: 227–233.

    Article  CAS  Google Scholar 

  75. Lejeune F, Poignant JC, Reure H . Electrophysiological study of tianeptine, a new enhancer of serotonin uptake with antidepressant activity. Neurophysiol Clin 1988; 18: 369–381.

    Article  CAS  PubMed  Google Scholar 

  76. Mocaer E, Rettori MC, Kamoun A . Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol 1988; 11 (Suppl 2): S32–S42.

    CAS  PubMed  Google Scholar 

  77. Morris RG, Kelly S, Burney D, Anthony T, Boyer PA, Spedding M . Tianeptine and its enantiomers: effects on spatial memory in rats with medial septum lesions. Neuropharmacology 2001; 41: 272–281.

    Article  CAS  PubMed  Google Scholar 

  78. Amaral DG, Kurz J . An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 1985; 240: 37–59.

    Article  CAS  PubMed  Google Scholar 

  79. Magarinos AM, Verdugo JM, McEwen BS . Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 1997; 94: 14002–14008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chamba G, Lemoine P, Flachaire E, Ferry N, Quincy C, Sassard J et al. Increased serotonin platelet uptake after tianeptine administration in depressed patients. Biol Psychiatry 1991; 30: 609–617.

    Article  CAS  PubMed  Google Scholar 

  81. Kato G, Weitsch AF . Neurochemical profile of tianeptine, a new antidepressant drug. Clin Neuropharmacol 1988; 11 (Suppl 2): S43–S50.

    CAS  PubMed  Google Scholar 

  82. Rogoz Z, Skuza G, Dlaboga D, Maj J, Dziedzicka-Wasylewska M . Effect of repeated treatment with tianeptine and fluoxetine on the central alpha(1)-adrenergic system. Neuropharmacology 2001; 41: 360–368.

    Article  CAS  PubMed  Google Scholar 

  83. Invernizzi R, Pozzi L, Garattini S, Samanin R . Tianeptine increases the extracellular concentrations of dopamine in the nucleus accumbens by a serotonin-independent mechanism. Neuropharmacology 1992; 31: 221–227.

    Article  CAS  PubMed  Google Scholar 

  84. Kim YJ, Shin MC, Kim SA, Chung JH, Kim EH, Kim CJ . Modulation of tianeptine on ion currents induced by inhibitory neurotransmitters in acutely dissociated dorsal raphe neurons of Sprague–Dawley rats. Eur Neuropsychopharmacol 2002; 12: 417–425.

    Article  CAS  PubMed  Google Scholar 

  85. Labrid C, Mocaer E, Kamoun A . Neurochemical and pharmacological properties of tianeptine, a novel antidepressant. Br J Psychiatry Suppl 1992; 160: 56–60.

    Article  Google Scholar 

  86. Mennini T, Mocaer E, Garattini S . Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedebergs Arch Pharmacol 1987; 336: 478–482.

    Article  CAS  PubMed  Google Scholar 

  87. Fattaccini CM, Bolanos-Jimenez F, Gozlan H, Hamon M . Tianeptine stimulates uptake of 5-hydroxytryptamine in vivo in the rat brain. Neuropharmacology 1990; 29: 1–8.

    Article  CAS  PubMed  Google Scholar 

  88. Watanabe Y, Sakai RR, McEwen BS, Mendelson S . Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res 1993; 615: 87–94.

    Article  CAS  PubMed  Google Scholar 

  89. Malagie I, Deslandes A, Gardier AM . Effects of acute and chronic tianeptine administration on serotonin outflow in rats: comparison with paroxetine by using in vivo microdialysis. Eur J Pharmacol 2000; 403: 55–65.

    Article  CAS  PubMed  Google Scholar 

  90. Pineyro G, Deveault L, de Montigny C, Blier P . Effect of prolonged administration of tianeptine on 5-HT neurotransmission: an electrophysiological study in the rat hippocampus and dorsal raphe. Naunyn Schmiedebergs Arch Pharmacol 1995; 351: 119–125.

    Article  CAS  PubMed  Google Scholar 

  91. Bonanno G, Giambelli R, Raiteri L, Tiraboschi E, Zappettini S, Musazzi L et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J Neurosci 2005; 25: 3270–3279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boyer PA, Skolnick P, Fossom LH . Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study. J Mol Neurosci 1998; 10: 219–233.

    Article  CAS  PubMed  Google Scholar 

  93. Boyce-Rustay JM, Holmes A . Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 2006; 31: 2405–2414.

    Article  CAS  PubMed  Google Scholar 

  94. Ryan B, Musazzi L, Mallei A, Tardito D, Gruber SH, El Khoury A et al. Remodelling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene–environment rat model of depression. Int J Neuropsychopharmacol 2009; 12: 553–559.

    Article  CAS  PubMed  Google Scholar 

  95. Witkin JM, Marek GJ, Johnson BG, Schoepp DD . Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 2007; 6: 87–100.

    Article  CAS  PubMed  Google Scholar 

  96. Palucha A, Pilc A . Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther 2007; 115: 116–147.

    Article  CAS  PubMed  Google Scholar 

  97. Palucha A, Tatarczynska E, Branski P, Szewczyk B, Wieronska JM, Klak K et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 2004; 46: 151–159.

    Article  CAS  PubMed  Google Scholar 

  98. Tatarczynska E, Palucha A, Szewczyk B, Chojnacka-Wojcik E, Wieronska J, Pilc A . Anxiolytic- and antidepressant-like effects of group III metabotropic glutamate agonist 36/40 (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (ACPT-I) in rats. Pol J Pharmacol 2002; 54: 707–710.

    Article  CAS  PubMed  Google Scholar 

  99. Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der PH . Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 2003; 17: 2409–2417.

    Article  PubMed  Google Scholar 

  100. Klodzinska A, Chojnacka-Wojcik E, Palucha A, Branski P, Popik P, Pilc A . Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 1999; 38: 1831–1839.

    Article  CAS  PubMed  Google Scholar 

  101. Karasawa J, Shimazaki T, Kawashima N, Chaki S . AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. Brain Res 2005; 1042: 92–98.

    Article  CAS  PubMed  Google Scholar 

  102. Kawashima N, Karasawa J, Shimazaki T, Chaki S, Okuyama S, Yasuhara A et al. Neuropharmacological profiles of antagonists of group II metabotropic glutamate receptors. Neurosci Lett 2005; 378: 131–134.

    Article  CAS  PubMed  Google Scholar 

  103. Matrisciano F, Scaccianoce S, Del Bianco P, Panaccione I, Canudas AM, Battaglia G et al. Metabotropic glutamate receptors and neuroadaptation to antidepressants: imipramine-induced down-regulation of beta-adrenergic receptors in mice treated with metabotropic glutamate 2/3 receptor ligands. J Neurochem 2005; 93: 1345–1352.

    Article  CAS  PubMed  Google Scholar 

  104. Pietraszek M, Sukhanov I, Maciejak P, Szyndler J, Gravius A, Wislowska A et al. Anxiolytic-like effects of mGlu1 and mGlu5 receptor antagonists in rats. Eur J Pharmacol 2005; 514: 25–34.

    Article  CAS  PubMed  Google Scholar 

  105. Pin JP, Acher F . The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 2002; 1: 297–317.

    Article  CAS  PubMed  Google Scholar 

  106. Anwyl R . Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 1999; 29: 83–120.

    Article  CAS  PubMed  Google Scholar 

  107. Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P . Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 2001; 40: 1028–1033.

    Article  CAS  PubMed  Google Scholar 

  108. Li X, Witkin JM, Need AB, Skolnick P . Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cell Mol Neurobiol 2003; 23: 419–430.

    Article  CAS  PubMed  Google Scholar 

  109. O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES . AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 2004; 3: 181–194.

    Article  PubMed  Google Scholar 

  110. Kole MH, Swan L, Fuchs E . The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur J Neurosci 2002; 16: 807–816.

    Article  PubMed  Google Scholar 

  111. Reagan LP, Rosell DR, Wood GE, Spedding M, Munoz C, Rothstein J et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA 2004; 101: 2179–2184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu GY, Cline HT . Stabilization of dendritic arbor structure in vivo by CaMKII. Science 1998; 279: 222–226.

    Article  CAS  PubMed  Google Scholar 

  113. Lowy MT, Wittenberg L, Yamamoto BK . Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 1995; 65: 268–274.

    Article  CAS  PubMed  Google Scholar 

  114. Lowy MT, Gault L, Yamamoto BK . Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 1993; 61: 1957–1960.

    Article  CAS  PubMed  Google Scholar 

  115. Bagley J, Moghaddam B . Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 1997; 77: 65–73.

    Article  CAS  PubMed  Google Scholar 

  116. Magarinos AM, McEwen BS . Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 89–98.

    Article  CAS  PubMed  Google Scholar 

  117. Cameron HA, McEwen BS, Gould E . Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 1995; 15: 4687–4692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fuchs E, Czeh B, Kole MH, Michaelis T, Lucassen PJ . Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 2004; 14 (Suppl 5): S481–S490.

    Article  CAS  PubMed  Google Scholar 

  119. Fuchs E, Czeh B, Michaelis T, de Biurrun G, Watanabe T, Frahm J . Synaptic plasticity and tianeptine: structural regulation. Eur Psychiatry 2002; 17 (Suppl 3): 311–317.

    Article  PubMed  Google Scholar 

  120. Lynch G . AMPA receptor modulators as cognitive enhancers. Curr Opin Pharmacol 2004; 4: 4–11.

    Article  CAS  PubMed  Google Scholar 

  121. Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C et al. AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J 2008; 22: 3129–3134.

    Article  CAS  PubMed  Google Scholar 

  122. Maeng S, Zarate Jr CA, Du J, Schloesser RJ, McCammon J, Chen G et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63: 349–352.

    Article  CAS  PubMed  Google Scholar 

  123. Rydmark I, Wahlberg K, Ghatan PH, Modell S, Nygren A, Ingvar M et al. Neuroendocrine, cognitive and structural imaging characteristics of women on longterm sickleave with job stress-induced depression. Biol Psychiatry 2006; 60: 867–873.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S McEwen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEwen, B., Chattarji, S., Diamond, D. et al. The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry 15, 237–249 (2010). https://doi.org/10.1038/mp.2009.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.80

Keywords

This article is cited by

Search

Quick links