Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression

Abstract

Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and βII isoenzymes result from the alternative splicing of the PKCβ gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCβII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the ‘normal’ PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCβ-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCβ roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCβ roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 1994.

  2. Persico AM, Bourgeron T . Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006; 29: 349–358.

    Article  CAS  PubMed  Google Scholar 

  3. Piven J, Palmer P, Jacobi D, Childress D, Arndt S . Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry 1997; 154: 185–190.

    Article  CAS  PubMed  Google Scholar 

  4. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA 2006; 103: 16834–16839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campbell DB, D'Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P et al. Disruption of cerebral cortex METsignaling in autism spectrum disorder. Ann Neurol 2007; 62: 243–250.

    Article  PubMed  Google Scholar 

  6. Sacco R, Militerni R, Frolli A, Bravaccio C, Gritti A, Elia M et al. Clinical, morphological, and biochemical correlates of head circumference in autism. Biol Psychiatry 2007; 62: 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  7. D'Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M et al. Abnormal intestinal permeability in children with autism. Acta Paediatr 1996; 85: 1076–1079.

    Article  CAS  PubMed  Google Scholar 

  8. Wakefield AJ, Ashwood P, Limb K, Anthony A . The significance of ileo-colonic lymphoid nodular hyperplasia in children with autistic spectrum disorder. Eur J Gastroenterol Hepatol 2005; 17: 827–836.

    Article  PubMed  Google Scholar 

  9. Jyonouchi H, Geng L, Ruby A, Zimmerman-Bier B . Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology 2005; 51: 77–85.

    Article  PubMed  Google Scholar 

  10. Reichelt WH, Knivsberg AM, Nodland M, Stensrud M, Reichelt KL . Urinary peptide levels and patterns in autistic children from seven countries, and the effect of dietary intervention after 4 years. Dev Brain Dysfunct 1997; 10: 44–55.

    Google Scholar 

  11. Bauman ML, Kemper TL . Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005; 23: 183–187.

    Article  PubMed  Google Scholar 

  12. Miller MT, Stromland K, Ventura L, Johansson M, Bandim JM, Gillberg C . Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int J Dev Neurosci 2005; 23: 201–219.

    Article  PubMed  Google Scholar 

  13. Teitelbaum O, Benton T, Shah PK, Prince A, Kelly JL, Teitelbaum P . Eshkol-Wachman movement notation in diagnosis: the early detection of Asperger's syndrome. Proc Natl Acad Sci USA 2004; 101: 11909–11914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Philippi A, Roschmann E, Tores F, Lindenbaum P, Benajou A, Germain-Leclerc L et al. Haplotypes in the gene encoding protein kinase c-beta (PRKCB1) on chromosome 16 are associated with autism. Mol Psychiatry 2005; 10: 950–960.

    Article  CAS  PubMed  Google Scholar 

  15. Bult A, Kobylk ME, Van der Zee EA . Differential expression of protein kinase C betaI (PKCbetaI) but not PKCalpha and PKCbetaII in the suprachiasmatic nucleus of selected house mouse lines, and the relationship to arginine-vasopressin. Brain Res 2001; 914: 123–133.

    Article  CAS  PubMed  Google Scholar 

  16. Ashique AM, Kharazia V, Yaka R, Phamluong K, Peterson AS, Ron D . Localization of the scaffolding protein RACK1 in the developing and adult mouse brain. Brain Res 2006; 1069: 31–38.

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Song TB, Li YJ, He KS, Ge L, Wang LR . Prenatal restraint stress impairs learning and memory and hippocampal PKCbeta1 expression and translocation in offspring rats. Brain Res 2007; 1141: 205–213.

    Article  CAS  PubMed  Google Scholar 

  18. Colombo PJ, Wetsel WC, Gallagher M . Spatial memory is related to hippocampal subcellular concentrations of calcium-dependent protein kinase C isoforms in young and aged rats. Proc Natl Acad Sci USA 1997; 94: 14195–14199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Birikh KR, Sklan EH, Shoham S, Soreq H . Interaction of ‘readthrough’ acetylcholinesterase with RACK1 and PKCβII correlates with intensified fear-induced conflict behavior. Proc Natl Acad Sci USA 2003; 100: 283–288.

    Article  CAS  PubMed  Google Scholar 

  20. Kang SW, Wahl MI, Chu J, Kitaura J, Kawakami Y, Kato RM et al. PKCβ modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J 2001; 20: 5692–5702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Long A, Kelleher D, Lynch S, Volkov Y . Cutting edge: protein kinase Cβ expression is critical for export of Il-2 from T cells. J Immunol 2001; 167: 636–640.

    Article  CAS  PubMed  Google Scholar 

  22. Volkov Y, Long A, McGrath S, Ni Eidhin D, Kelleher D . Crucial importance of PKCβI in LFA-1-mediated locomotion of activated T cells. Nat Immunol 2001; 2: 508–514.

    Article  CAS  PubMed  Google Scholar 

  23. Cejas PJ, Carlson LM, Zhang J, Padmanabhan S, Kolonias D, Lindner I et al. Protein kinase C βII plays an essential role in dendritic cell differentiation and autoregulates its own expression. J Biol Chem 2005; 280: 28412–28423.

    Article  CAS  PubMed  Google Scholar 

  24. Siow YL, Au-Yeung KK, Woo CW, Karmin O . Homocysteine stimulates phosphorylation of NADPH oxidase p47phox and p67phox subunits in monocytes via protein kinase Cβ activation. Biochem J 2006; 398: 73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma HT, Lin WW, Zhao B, Wu WT, Huang W, Li Y et al. Protein kinase C β and δ isoenzymes mediate cholesterol accumulation in PMA-activated macrophages. Biochem Biophys Res Commun 2006; 349: 214–220.

    Article  CAS  PubMed  Google Scholar 

  26. Banan A, Fields JZ, Zhang Y, Keshavarzian A . Key role of PKC and Ca2+ in EGF protection of microtubules and intestinal barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 2001; 280: G828–G843.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Su W, Thompson EA, Leitges M, Murray NR, Fields AP . Protein kinase CβII regulates its own expression in rat intestinal epithelial cells and the colonic epithelium in vivo. J Biol Chem 2004; 279: 45556–45563.

    Article  CAS  PubMed  Google Scholar 

  28. Yu W, Murray NR, Weems C, Chen L, Guo H, Ethridge R et al. Role of cyclooxygenase 2 in protein kinase C βII-mediated colon carcinogenesis. J Biol Chem 2003; 278: 11167–11174.

    Article  CAS  PubMed  Google Scholar 

  29. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL . Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997; 100: 115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu Y, Wu G, Qi X, Lin H, Qian H, Shen J et al. Protein kinase C β inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J Pharmacol Sci 2006; 101: 335–343.

    Article  CAS  PubMed  Google Scholar 

  31. Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 2006; 55: 3112–3120.

    Article  CAS  PubMed  Google Scholar 

  32. Yang MS, Cochrane L, Conroy J, Hawi Z, Fitzgerald M, Gallagher L et al. Protein kinase C-β1 gene variants are not associated with autism in the Irish population. Psychiatr Genet 2007; 17: 39–41.

    Article  PubMed  Google Scholar 

  33. Conciatori M, Stodgell CJ, Hyman SL, O'Bara M, Militerni R, Bravaccio C et al. Morphogenetic effect of the HOXA1 A218G polymorphism on head circumference in patients with autism. Biol Psychiatry 2004; 55: 413–419.

    Article  CAS  PubMed  Google Scholar 

  34. Lord C, Rutter M, DiLavore PC, Risi S . ADOS, Autism Diagnostic Observation Schedule. Western Psychological Services: Los Angeles, 2002 (Italian version ed. by Tancredi R, Saccani M, Persico AM, Parrini B, Igliozzi R and Faggioli R. Organizzazioni Speciali: Florence, 2005).

    Google Scholar 

  35. Rutter M, Le Couter A, Lord C . ADI-R, Autism Diagnostic Interview—Revised. Western Psychological Services: Los Angeles, 2003 (Italian version ed. by Faggioli R, Saccani M, Persico AM, Tancredi R, Parrini B and Igliozzi R. Organizzazioni Speciali: Florence, 2005).

    Google Scholar 

  36. Persico AM, Pascucci T, Puglisi-Allegra S, Militerni R, Bravaccio C, Schneider C et al. Serotonin transporter promoter variants do not explain the hyperserotoninemia in autistic children. Mol Psychiatry 2002; 7: 795–800.

    Article  CAS  PubMed  Google Scholar 

  37. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  38. Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM . Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004; 26: 61–69.

    Article  PubMed  Google Scholar 

  39. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  41. Pritchard JK, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics 2000; 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zilbovicius M, Meresse I, Chabane N, Brunelle F, Samson Y, Boddaert N . Autism, the superior temporal sulcus and social perception. Trends Neurosci 2006; 29: 359–366.

    Article  CAS  PubMed  Google Scholar 

  43. Bustin SA . Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000; 25: 169–193.

    Article  CAS  PubMed  Google Scholar 

  44. Arion D, Sabatini M, Unger T, Pastor J, Alonso-Nanclares L, Ballesteros-Yanez I et al. Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy. Neurobiol Dis 2006; 22: 374–387.

    Article  CAS  PubMed  Google Scholar 

  45. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  46. Lepre J, Rice JJ, Tu Y, Stolovitzky G . Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data. Bioinformatics 2004; 20: 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar RA, Karamohamed S, Sudi J, Conrad DF, Brune C, Badner JA et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 2007; 17: 628–638.

    Article  PubMed  Google Scholar 

  50. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  PubMed  Google Scholar 

  51. Nakaya HI, Amaral PP, Louro R, Lopes A, Fachel AA, Moreira YB et al. Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol 2007; 8: R43.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 2007; 3: e87.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Leitges M, Schmedt C, Guinamard R, Davoust J, Schaal S, Stabel S et al. Immunodeficiency in protein kinase cβ-deficient mice. Science 1996; 273: 788–791.

    Article  CAS  PubMed  Google Scholar 

  54. Dimitri P, Domenicotti C, Nitti M, Vitali A, Borghi R, Cottalasso D et al. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of βI and βII PKCs in NT2 cells. Biochem Biophys Res Commun 2000; 268: 642–646.

    Article  Google Scholar 

  55. Domenicotti C, Paola D, Vitali A, Nitti M, d'Abramo C, Cottalasso D et al. Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding. Free Radic Biol Med 2000; 29: 1280–1290.

    Article  CAS  PubMed  Google Scholar 

  56. Garbett KA, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K et al. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 2008 (in press).

  57. Chauhan A, Chauhan V . Oxidative stress in autism. Pathophysiology 2006; 13: 171–181.

    Article  CAS  PubMed  Google Scholar 

  58. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA . Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57: 67–81.

    Article  CAS  PubMed  Google Scholar 

  59. Antar LN, Afroz R, Dictenberg JB, Carroll RC, Bassell GJ . Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci 2004; 24: 2648–2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Araki S, Ng DP, Krolewski B, Wyrwicz L, Rogus JJ, Canani L et al. Identification of a common risk haplotype for diabetic nephropathy at the protein kinase C-β1 (PRKCB1) gene locus. J Am Soc Nephrol 2003; 14: 2015–2024.

    Article  CAS  PubMed  Google Scholar 

  61. Araki S, Haneda M, Sugimoto T, Isono M, Isshiki K, Kashiwagi A et al. Polymorphisms of the protein kinase C-β gene (PRKCB1) accelerate kidney disease in type 2 diabetes without overt proteinuria. Diabetes Care 2006; 29: 864–868.

    Article  CAS  PubMed  Google Scholar 

  62. Araki S, Koya D, Makiishi T, Sugimoto T, Isono M, Kikkawa R et al. APOE polymorphism and the progression of diabetic nephropathy in Japanese subjects with type 2 diabetes: results of a prospective observational follow-up study. Diabetes Care 2003; 26: 2416–2420.

    Article  CAS  PubMed  Google Scholar 

  63. Araki S, Moczulski DK, Hanna L, Scott LJ, Warram JH, Krolewski AS . APOE polymorphisms and the development of diabetic nephropathy in type 1 diabetes: results of case-control and family-based studies. Diabetes 2000; 49: 2190–2195.

    Article  CAS  PubMed  Google Scholar 

  64. Persico AM, D'Agruma L, Zelante L, Militerni R, Bravaccio C, Schneider C et al. Enhanced APOE2 transmission rates in families with autistic probands. Psychiatr Genet 2004; 14: 73–82.

    Article  CAS  PubMed  Google Scholar 

  65. Krey JF, Dolmetsch RE . Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol 2007; 17: 112–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Laura Gaita and Rosanna D'Oronzio for technical assistance, Francis Rousseau and Anne Philippi (IntegraGen SA, Evry, France) for the genotyping and the population stratification analysis, Carlo Lenti and Roberto Rigardetto for contributing to patient recruitment, all the patients and families who generously contributed to these studies, and the Autism Tissue Program, Harvard Brain Tissue Resource Center, and Maryland NICHD Brain Tissue Center for providing the brain tissue samples. This work was supported by the Italian Ministry for University, Scientific Research and Technology (Programmi di Ricerca di Interesse Nazionale, prot. no.2006058195), the National Alliance for Autism Research (Princeton, NJ), the Cure Autism Now Foundation (Los Angeles, CA) and the Fondation Jerome Lejeune (Paris, France) to AMP, and by VUKC Startup Fund, R01 MH079299, and K02 MH070786 to KM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Persico.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lintas, C., Sacco, R., Garbett, K. et al. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Mol Psychiatry 14, 705–718 (2009). https://doi.org/10.1038/mp.2008.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.21

Keywords

This article is cited by

Search

Quick links