Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression

Abstract

The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports the view of a neuritic and synaptic dysfunction in the neuropathology of SCZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M et al. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005; 180: 191–205.

    Article  CAS  Google Scholar 

  2. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH . Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007; 32: 1888–1902.

    Article  CAS  PubMed  Google Scholar 

  3. Beneyto M, Meador-Woodruff JH . Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse 2006; 60: 585–598.

    Article  CAS  PubMed  Google Scholar 

  4. Goldman-Rakic PS, Selemon LD . Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23: 437–458.

    Article  CAS  PubMed  Google Scholar 

  5. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry 2000; 57: 471–480.

    Article  CAS  PubMed  Google Scholar 

  6. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 5.

    Article  CAS  PubMed  Google Scholar 

  7. Brambilla P, Glahn DC, Balestrieri M, Soares JC . Magnetic resonance findings in bipolar disorder. Psychiatr Clin North Am 2005; 28: 443–467.

    Article  PubMed  Google Scholar 

  8. Rajkowska G, Halaris A, Selemon LD . Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49: 741–752.

    Article  CAS  PubMed  Google Scholar 

  9. Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C . Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2002; 57: 127–138.

    Article  PubMed  Google Scholar 

  10. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–394.

    Article  PubMed  Google Scholar 

  11. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744.

    Article  PubMed  Google Scholar 

  12. Lewis DA, Hashimoto T . Deciphering the disease process of schizophrenia: the contribution of cortical gaba neurons. Int Rev Neurobiol 2007; 78: 109–131.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis DA, Moghaddam B . Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 2006; 63: 1372–1376.

    Article  PubMed  Google Scholar 

  14. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D . Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 2006; 6: 3414–3425.

    Article  CAS  PubMed  Google Scholar 

  15. Clark D, Dedova I, Cordwell S, Matsumoto I . A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006; 11: 423, 459–470.

    Article  Google Scholar 

  16. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 643, 684–697.

    Article  Google Scholar 

  17. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2007; Oct 16 e-pub ahead of print.

  18. Dean B, Opeskin K, Pavey G, Hill C, Keks N . Changes in protein kinase C and adenylate cyclase in the temporal lobe from subjects with schizophrenia. J Neural Transm 1997; 104: 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  19. Owen MJ, O’Donovan MC, Harrison PJ . Schizophrenia: a genetic disorder of the synapse? BMJ 2005; 330: 158–159.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Opeskin K, Dean B, Pavey G, Hill C, Keks N, Copolov D . Neither protein kinase C nor adenylate cyclase are altered in the striatum from subjects with schizophrenia. Schizophr Res 1996; 22: 159–164.

    Article  CAS  PubMed  Google Scholar 

  21. Pennington K, Cotter D, Dunn MJ . The role of proteomics in investigating psychiatric disorders. Br J Psychiatry 2005; 187: 4–6.

    Article  CAS  PubMed  Google Scholar 

  22. Allen JA, Halverson-Tamboli RA, Rasenick MM . Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2007; 8: 128–140.

    Article  CAS  PubMed  Google Scholar 

  23. Gil C, Soler-Jover A, Blasi J, Aguilera J . Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. Biochem Biophys Res Commun 2005; 329: 117–124.

    Article  CAS  PubMed  Google Scholar 

  24. Li N, Mak A, Richards DP, Naber C, Keller BO, Li L et al. Monocyte lipid rafts contain proteins implicated in vesicular trafficking and phagosome formation. Proteomics 2003; 3: 536–548.

    Article  CAS  PubMed  Google Scholar 

  25. Bini L, Pacini S, Liberatori S, Valensin S, Pellegrini M, Raggiaschi R et al. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem J 2003; 369: 301–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Foster LJ, De Hoog CL, Mann M . Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 2003; 100: 5813–5818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ . Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem 2002; 277: 43399–43409.

    Article  CAS  PubMed  Google Scholar 

  28. Blonder J, Hale ML, Lucas DA, Schaefer CF, Yu LR, Conrads TP et al. Proteomic analysis of detergent-resistant membrane rafts. Electrophoresis 2004; 25: 1307–1318.

    Article  CAS  PubMed  Google Scholar 

  29. Jia J, Lamer S, Schüemann M, Schmidt M, Krause E, Haucke V . Quantitative proteomic analysis of detergent-resistant membranes from chemical synapses: evidence for cholesterol as spatial organizer of synaptic vesicle cycling. Mol Cell Proteomics 2006; 5: 2060–2071.

    Article  CAS  PubMed  Google Scholar 

  30. Martosella J, Zolotarjova N, Liu H, Moyer SC, Perkins PD, Boyes BE . High recovery HPLC separation of lipid rafts for membrane proteome analysis. J Proteome Res 2006; 5: 1301–1312.

    Article  CAS  PubMed  Google Scholar 

  31. Parkin ET, Hussain I, Karran EH, Turner AJ, Hooper NM . Characterization of detergent-insoluble complexes containing the familial Alzheimer's disease-associated presenilins. J Neurochem 1999; 72: 1534–1543.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang L, He L, Fountoulakis M . Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 2004; 1023: 317–320.

    Article  CAS  PubMed  Google Scholar 

  33. Maguire PB, Wynne KJ, Harney DF, O’Donoghue NM, Stephens G, Fitzgerald DJ . Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics 2002; 2: 642–648.

    Article  CAS  PubMed  Google Scholar 

  34. Behan A, Doyle S, Farrell M . Adaptive responses to mitochondrial dysfunction in the rho degrees Namalwa cell. Mitochondrion 2005; 5: 173–193.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez JC, Rouge V, Pisteur M, Ravier F, Tonella L, Moosmayer M et al. Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 1997; 18: 324–327.

    Article  CAS  PubMed  Google Scholar 

  36. Focking M, Boersema PJ, O’Donoghue N, Lubec G, Pennington SR, Cotter DR et al. 2-D DIGE as a quantitative tool for investigating the HUPO Brain Proteome Project mouse series. Proteomics 2006; 6: 4914–4931.

    Article  CAS  PubMed  Google Scholar 

  37. Beasley CL, Honer WG, Bergmann K, Falkai P, Lütjohann D, Bayer TA . Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord 2005; 7: 449–455.

    Article  CAS  PubMed  Google Scholar 

  38. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000; 21: 3666–3672.

    Article  CAS  PubMed  Google Scholar 

  39. Shevchenko A, Wilm M, Vorm O, Mann M . Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996; 68: 850–858.

    Article  CAS  PubMed  Google Scholar 

  40. Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103: 2096–2104.

    Article  CAS  PubMed  Google Scholar 

  41. Nesvizhskii AI, Keller A, Kolker E, Aebersold R . A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003; 75: 4646–4658.

    Article  CAS  PubMed  Google Scholar 

  42. Kokubo H, Helms JB, Ohno-Iwashita Y, Shimada Y, Horikoshi Y, Yamaguchi H . Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains, rafts, in rat brain tissue. Brain Res 2003; 965: 83–90.

    Article  CAS  PubMed  Google Scholar 

  43. Slaughter N, Laux I, Tu X, Whitelegge J, Zhu X, Effros R et al. The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components: implications for T-cell activation. Clin Immunol 2003; 108: 138–151.

    Article  CAS  PubMed  Google Scholar 

  44. Harder T, Scheiffele P, Verkade P, Simons K . Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 1998; 141: 929–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khan TK, Yang B, Thompson NL, Maekawa S, Epand RM, Jacobson K . Binding of NAP-22, a calmodulin-binding neuronal protein, to raft-like domains in model membranes. Biochemistry 2003; 42: 4780–4786.

    Article  CAS  PubMed  Google Scholar 

  46. Gil C, Cubi R, Blasi J, Aguilera J . Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature. Biochem Biophys Res Commun 2006; 348: 1334–1342.

    Article  CAS  PubMed  Google Scholar 

  47. Funatsu N, Miyata S, Kumanogoh H, Shigeta M, Hamada K, Endo Y et al. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem 1999; 274: 8224–8230.

    Article  CAS  PubMed  Google Scholar 

  48. Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M . Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 2002; 157: 521–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY et al. Oxidation–reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 2006; 6: 2444–2453.

    Article  CAS  PubMed  Google Scholar 

  50. Raimondo F, Ceppi P, Guidi K, Masserini M, Foletti C, Pitto M . Proteomics of plasma membrane microdomains. Expert Rev Proteomics 2005; 2: 793–807.

    Article  CAS  PubMed  Google Scholar 

  51. Behan ÁT, Wynne M, Clarke K, Sullivan MM, Cotter DM, Maguire PM . Analysis of membrane microdomain-associated proteins in the insular cortex of post-mortem human brain. Proteomics Clin Appl 2007; 1: 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  52. Quinton TM, Kim S, Jin J, Kunapuli SP . Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost 2005; 3: 1036–1041.

    Article  CAS  PubMed  Google Scholar 

  53. Yang B, Steegmaier M, Gonzalez Jr LC, Scheller RH . nSec1 binds a closed conformation of syntaxin1A. J Cell Biol 2000; 148: 247–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitchell SJ, Ryan TA . Munc18-dependent regulation of synaptic vesicle exocytosis by syntaxin-1A in hippocampal neurons. Neuropharmacology 2005; 48: 372–380.

    Article  CAS  PubMed  Google Scholar 

  55. Rickman C, Medine CN, Bergmann A, Duncan RR . Functionally and spatially distinct modes of munc18-syntaxin 1 interaction. J Biol Chem 2007; 282: 12097–12103.

    Article  CAS  PubMed  Google Scholar 

  56. Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL . Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 2000; 48: 184–196.

    Article  CAS  PubMed  Google Scholar 

  57. Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P et al. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry 1997; 54: 559–566.

    Article  CAS  PubMed  Google Scholar 

  58. Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 1997; 78: 99–110.

    Article  CAS  PubMed  Google Scholar 

  59. Halim ND, Weickert CS, McClintock BW, Hyde TM, Weinberger DR, Kleinman JE et al. Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol Psychiatry 2003; 8: 797–810.

    Article  CAS  PubMed  Google Scholar 

  60. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349–356.

    Article  PubMed  Google Scholar 

  61. Mukaetova-Ladinska EB, Hurt J, Honer WG, Harrington CR, Wischik CM . Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett 2002; 317: 161–165.

    Article  CAS  PubMed  Google Scholar 

  62. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maekawa S, Iino S, Miyata S . Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central nervous system. Biochim Biophys Acta 2003; 1610: 261–270.

    Article  CAS  PubMed  Google Scholar 

  64. Frey D, Laux T, Xu L, Schneider C, Caroni P . Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol 2000; 149: 1443–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eastwood SL, Harrison PJ . Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 2001; 55: 569–578.

    Article  CAS  PubMed  Google Scholar 

  66. Weickert CS, Webster MJ, Hyde TM, Herman MM, Bachus SE, Bali G et al. Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of patients with schizophrenia. Cereb Cortex 2001; 11: 136–147.

    Article  CAS  PubMed  Google Scholar 

  67. Eastwood SL, Harrison PJ . Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience 1998; 86: 437–448.

    Article  CAS  PubMed  Google Scholar 

  68. Horton HL, Levitt P . A unique membrane protein is expressed on early developing limbic system axons and cortical targets. J Neurosci 1988; 8: 4653–4661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zacco A, Cooper V, Chantler PD, Fisher-Hyland S, Horton HL, Levitt P . Isolation, biochemical characterization and ultrastructural analysis of the limbic system-associated membrane protein (LAMP), a protein expressed by neurons comprising functional neural circuits. J Neurosci 1990; 10: 73–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pimenta AF, Levitt P . Characterization of the genomic structure of the mouse limbic system-associated membrane protein (Lsamp) gene. Genomics 2004; 83: 790–801.

    Article  CAS  PubMed  Google Scholar 

  71. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122 (Part 4): 593–624.

    Article  PubMed  Google Scholar 

  72. Iwamoto K, Bundo M, Kato T . Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241–253.

    Article  CAS  PubMed  Google Scholar 

  73. Steiner P, Sarria JC, Huni B, Marsault R, Catsicas S, Hirling H . Overexpression of neuronal Sec1 enhances axonal branching in hippocampal neurons. Neuroscience 2002; 113: 893–905.

    Article  CAS  PubMed  Google Scholar 

  74. Bellon A . New genes associated with schizophrenia in neurite formation: a review of cell culture experiments. Mol Psychiatry 2007; 12: 620–629.

    Article  CAS  PubMed  Google Scholar 

  75. Shirasu M, Kimura K, Kataoka M, Takahashi M, Okajima S, Kawaguchi S et al. VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells. Neurosci Res 2000; 37: 265–275.

    Article  CAS  PubMed  Google Scholar 

  76. Knable MB, Barci BM, Bartko JJ, Webster MJ, Torrey EF . Molecular abnormalities in the major psychiatric illnesses: classification and regression tree (CRT) analysis of post-mortem prefrontal markers. Mol Psychiatry 2002; 7: 392–404.

    Article  CAS  PubMed  Google Scholar 

  77. McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH . Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 2007; 1127: 108–118.

    Article  CAS  PubMed  Google Scholar 

  78. Blennow K, Bogdanovic N, Gottfries CG, Davidsson P . The growth-associated protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in schizophrenia. J Mol Neurosci 1999; 13: 101–109.

    Article  CAS  PubMed  Google Scholar 

  79. Perrone-Bizzozero NI et al. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA 1996; 93: 14182–14187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sower AC, Bird ED, Perrone-Bizzozero NI . Increased levels of GAP-43 protein in schizophrenic brain tissues demonstrated by a novel immunodetection method. Mol Chem Neuropathol 1995; 24: 1–11.

    Article  CAS  PubMed  Google Scholar 

  81. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B . Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 2006; 8: 133–143.

    Article  CAS  PubMed  Google Scholar 

  82. Chambers JS, Thomas D, Saland L, Neve RL, Perrone-Bizzozero NI . Growth-associated protein 43 (GAP-43) and synaptophysin alterations in the dentate gyrus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 283–290.

    Article  CAS  PubMed  Google Scholar 

  83. Vawter MP . Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 2000; 405: 385–395.

    Article  CAS  PubMed  Google Scholar 

  84. Barr AM, Young CE, Phillips AG, Honer WG . Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 2006; 9: 457–463.

    Article  CAS  PubMed  Google Scholar 

  85. Eastwood SL, Heffernan J, Harrison PJ . Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes. Mol Psychiatry 1997; 2: 322–329.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Post-mortem brains were donated by the (i) Stanley Foundation Brain Bank Consortium, courtesy of Drs Llewellyn B Bigelow, Maree J Webster and staff and (ii) Harvard Brain Tissue Resource Centre, courtesy of Drs Francine Benes, George Tejada, David J Ennulat, Louis Fernandez and staff. We would like to thank Professor Patrick Levitt and Dr Aurea Pimenta, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Tennessee, for the kind gift of the LAMP antibody. In addition, we thank Drs Patricia Maguire and Martina Foy for their technical assistance in membrane microdomain isolation. Access to and use of MS instrumentation of Conway Institute is gratefully acknowledged and we thank Dr Niaobh O’Donoghue, Kasper Pedersen and Kieran Wynne for their technical assistance in mass spectrometry. We thank Patrick Dicker for his expertise in statistical analysis. In addition, we thank Matt Sullivan and the proteomics informatics group (http://proteomics.ucd.ie) for use of their Proline software. This work was funded by the Health Research Board, The Wellcome Trust and Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Cotter.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behan, Á., Byrne, C., Dunn, M. et al. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 14, 601–613 (2009). https://doi.org/10.1038/mp.2008.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.7

Keywords

This article is cited by

Search

Quick links