Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elevated brain lactate responses to neural activation in panic disorder: a dynamic 1H-MRS study

Abstract

Converging evidence suggests that patients with panic disorder have a metabolic disturbance that may influence the regulation of arousal systems and confer vulnerability to ‘spontaneous’ panic attacks. The consistent finding of elevated brain lactate responses to various metabolic challenges in panic disorder appears to support this model, although the mechanism of this effect is not understood. Several mechanisms have been proposed to account for elevated brain lactate responses in panic disorder, including (1) brain hypoxia due to excessive cerebral vasoconstriction, and (2) a metabolic disturbance affecting lactate metabolism. Recent studies have shown that neural activation (for example, sensory stimulation) causes local lactate accumulation in the presence of increased oxygen availability. The current study used proton magnetic resonance spectroscopic measures of visual cortex lactate changes during visual stimulation in 15 untreated patients with panic disorder and 15 matched volunteers to critically test these two proposed mechanisms of elevated brain lactate responses in panic disorder. Visual cortex lactate/N-acetylaspartate increased during visual stimulation in both groups. The increase was significantly greater in the panic patients than in the comparison group. There were no group differences in end-tidal pCO2. The finding that visual stimulation leads to significantly greater visual cortex lactate responses in panic patients is not predicted by the hypoxia model. These results suggest that a metabolic disturbance affecting the production or clearance of lactate is the cause of the elevated brain lactate responses consistently observed in panic disorder and provide further support for metabolic models of vulnerability to this illness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Eaton WW, Kessler RC, Wittchen HU, Magee WJ . Panic and panic disorder in the United States. Am J Psychiatry 1994; 151: 413–420.

    Article  CAS  Google Scholar 

  2. Markowitz JS, Weissman MM, Ouellette R, Lish JD, Klerman GL . Quality of life in panic disorder. Arch Gen Psychiatry 1989; 46: 984–992.

    Article  CAS  Google Scholar 

  3. Kendler KS, Gardner CO, Prescott CA . Panic syndromes in a population-based sample of male and female twins. Psychol Med 2001; 31: 989–1000.

    Article  CAS  Google Scholar 

  4. Knowles JA, Weissman MM . Panic disorder and agoraphobia. In: Oldham JM, Riba MB, (eds). Review of Psychiatry. American Psychiatric Press: Washington, DC, 1995, pp. 383–404.

    Google Scholar 

  5. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA . CNS distribution of members of the two-pore-domain (kcnk) potassium channel family. J Neurosci 2001; 21: 7491–7505.

    Article  CAS  Google Scholar 

  6. Washburn CP, Sirois JE, Talley EM, Guyenet PG, Bayliss DA . Serotonergic raphe neurons express task channel transcripts and a task-like pH- and halothane-sensitive K+ conductance. J Neurosci 2002; 22: 1256–1265.

    Article  CAS  Google Scholar 

  7. Filosa JA, Putnam RW . Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. Am J Physiol Cell Physiol 2003; 284: C145–C155.

    Article  CAS  Google Scholar 

  8. Putnam RW, Filosa JA, Ritucci NA . Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 2004; 287: C1493–C1526.

    Article  CAS  Google Scholar 

  9. Liebowitz MR, Gorman JM, Fyer AJ, Levitt M, Dillon D, Levy G et al. Lactate provocation of panic attacks, ii: biochemical and physiological findings. Arch Gen Psychiatry 1985; 42: 709–719.

    Article  CAS  Google Scholar 

  10. Rainey JM, Frohman CE, Warner K, Bates S, Pohl RB, Yeragani V . Panic anxiety and lactate metabolism. Psychopharmacol Bull 1985; 21: 434–437.

    PubMed  Google Scholar 

  11. Woods SW, Charney DS, Loke J, Goodman WK, Redmond Jr DE, Heninger GR . Carbon dioxide sensitivity in panic anxiety. Ventilatory and anxiogenic response to carbon dioxide in healthy subjects and patients with panic anxiety before and after alprazolam treatment. Arch Gen Psychiatry 1986; 43: 900–909.

    Article  CAS  Google Scholar 

  12. Lee YJ, Curtis GC, Weg JG, Abelson JL, Modell JG, Campbell KM . Panic attacks induced by doxapram. Biol Psychiatry 1993; 33: 295–297.

    Article  CAS  Google Scholar 

  13. Uhde TW, Boulenger JP . Caffeine model of panic, In: Lerer B, Gershon S (eds). New Directions in Affective Disorders. Springer-Verlag: New York, 1989, pp. 410–413.

    Chapter  Google Scholar 

  14. Maddock RJ, Mateo-Bermudez J . Elevated serum lactate following hyperventilation during glucose infusion in panic disorder. Biol Psychiatry 1990; 27: 411–418.

    Article  CAS  Google Scholar 

  15. Tancer ME, Stein MB, Uhde TW . Lactic acid response to caffeine in panic disorder: comparison to social phobics and normal controls. Anxiety 1994; 1: 138–140.

    Article  Google Scholar 

  16. Dager SR, Strauss WL, Marro KI, Richards TL, Metzger GD, Artru AA . Proton magnetic resonance spectroscopy investigation of hyperventilation in subjects with panic disorder and comparison subjects. Am J Psychiatry 1995; 152: 666–672.

    Article  CAS  Google Scholar 

  17. Maddock RJ . The lactic acid response to alkalosis in panic disorder: an integrative review. J Neuropsychiatry Clin Neurosci 2001; 13: 22–34.

    Article  CAS  Google Scholar 

  18. Wilhelm FH, Trabert W, Roth WT . Physiologic instability in panic disorder and generalized anxiety disorder. Biol Psychiatry 2001; 49: 596–605.

    Article  CAS  Google Scholar 

  19. Friedman SD, Mathis CM, Hayes C, Renshaw P, Dager SR . Brain ph response to hyperventilation in panic disorder: preliminary evidence for altered acid-base regulation. Am J Psychiatry 2006; 163: 710–715.

    Article  Google Scholar 

  20. Coplan JD, Lydiard RB . Brain circuits in panic disorder. Biol Psychiatry 1998; 44: 1264–1276.

    Article  CAS  Google Scholar 

  21. Gorman JM, Kent JM, Sullivan GM, Coplan JD . Neuroanatomical hypothesis of panic disorder, revised. Am J Psychiatry 2000; 157: 493–505.

    Article  CAS  Google Scholar 

  22. Jones M, Scarisbrick R . The effect of exercise on soldiers with neurocirculatory asthenia. Psychosom Med 1946; 8: 188–194.

    Article  CAS  Google Scholar 

  23. Cohen ME, White P . Life situations, emotions and neurocirculatory asthenia (anxiety neurosis, neurasthenia, effort syndrome). Proc Assoc Res Nerv Ment Dis 1950; 29: 832–869.

    Google Scholar 

  24. Dager SR, Layton ME, Strauss W, Richards TL, Heide A, Friedman SD et al. Human brain metabolic response to caffeine and the effects of tolerance. Am J Psychiatry 1999; 156: 229–237.

    CAS  PubMed  Google Scholar 

  25. Maddock RJ, Carter CS, Gietzen DW . Elevated serum lactate associated with panic attacks induced by hyperventilation. Psychiatry Res 1991; 38: 301–311.

    Article  CAS  Google Scholar 

  26. Olsson M, Ho HP, Annerbrink K, Thylefors J, Eriksson E . Respiratory responses to intravenous infusion of sodium lactate in male and female wistar rats. Neuropsychopharmacology 2002; 27: 85–91.

    Article  CAS  Google Scholar 

  27. Gargaglioni LH, Bicego KC, Steiner AA, Branco LG . Lactate as a modulator of hypoxia-induced hyperventilation. Respir Physiol Neurobiol 2003; 138: 37–44.

    Article  CAS  Google Scholar 

  28. Dager SR, Richards T, Strauss W, Artru A . Single-voxel 1h-mrs investigation of brain metabolic changes during lactate-induced panic. Psychiatry Res 1997; 30: 89–99.

    Article  Google Scholar 

  29. Dager SR, Friedman SD, Heide A, Layton ME, Richards T, Artru A et al. Two-dimensional proton echo-planar spectroscopic imaging of brain metabolic changes during lactate-induced panic. Arch Gen Psychiatry 1999; 56: 70–77.

    Article  CAS  Google Scholar 

  30. Layton ME, Friedman SD, Dager SR . Brain metabolic changes during lactate-induced panic: effects of gabapentin treatment. Depress Anxiety 2001; 14: 251–254.

    Article  CAS  Google Scholar 

  31. Edvinsson L, MacKenzie ET, McCulloch J . Changes in arterial gas tensions, In: Edvinsson L, MacKenzie ET, McCulloch J (eds). Cerebral Blood Flow and Metabolism. Raven Press: New York, 1993, pp. 524–552.

    Google Scholar 

  32. Ball S, Shekhar A . Basilar artery response to hyperventilation in panic disorder. Am J Psychiatry 1997; 154: 1603–1604.

    Article  CAS  Google Scholar 

  33. Gibbs DM . Hyperventilation-induced cerebral ischemia in panic disorder and effect of nimodipine. Am J Psychiatry 1992; 149: 1589–1591.

    Article  CAS  Google Scholar 

  34. Baynes J, Dominiczak M . Medical Biochemistry. Elsevier Mosby: Philadelphia, 2005.

    Google Scholar 

  35. Gladden LB . Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004; 558 (Part 1): 5–30.

    Article  CAS  Google Scholar 

  36. Schurr A . Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 2006; 26: 142–152.

    Article  CAS  Google Scholar 

  37. Gruetter R . Glycogen: the forgotten cerebral energy store. J Neurosci Res 2003; 74: 179–183.

    Article  CAS  Google Scholar 

  38. Dringen R, Gebhardt R, Hamprecht B . Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 1993; 623: 208–214.

    Article  CAS  Google Scholar 

  39. Hu Y, Wilson GS . A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 1997; 69: 1484–1490.

    Article  CAS  Google Scholar 

  40. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M et al. Lactate rise detected by 1 h nmr in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 1991; 88: 5829–5831.

    Article  CAS  Google Scholar 

  41. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG . Neuronal-glial glucose oxidation and glutamatergic-gabaergic function. J Cereb Blood Flow Metab 2006; 26: 865–877.

    Article  CAS  Google Scholar 

  42. Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW . Effect of photic stimulation on human visual cortex lactate and phosphates using 1 h and 31p magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1992; 12: 584–592.

    Article  CAS  Google Scholar 

  43. Maddock RJ, Buonocore MH, Lavoie SP, Copeland LE, Kile SJ, Richards AL et al. Brain lactate responses during visual stimulation in fasting and hyperglycemic subjects: a proton magnetic resonance spectroscopy study at 1.5 tesla. Psychiatry Res 2006; 148: 47–54.

    Article  CAS  Google Scholar 

  44. Fox PT, Raichle ME . Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986; 83: 1140–1144.

    Article  CAS  Google Scholar 

  45. Raichle ME, Mintun MA . Brain work and brain imaging. Annu Rev Neurosci 2006; 29: 449–476.

    Article  CAS  Google Scholar 

  46. Barone JJ, Roberts HR . Caffeine consumption. Food Chem Toxicol 1996; 34: 119–129.

    Article  CAS  Google Scholar 

  47. First MB, Spitzer RL, Gibbon M, Williams JBW . Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition with Psychotic Screen (SCID-I/P W/ PSY Screen). Biometrics Research New York State Psychiatric Institute: New York, 2001.

    Google Scholar 

  48. Dillon DJ, Gorman JM, Liebowitz MR, Fyer AJ, Klein DF . Measurement of lactate-induced panic and anxiety. Psychiatry Res 1987; 20: 97–105.

    Article  CAS  Google Scholar 

  49. Spielberger CD . Manual for the State-Trait Anxiety Inventory (STAI Form Y). Consulting Psychologists Press: Palo Alto, 1983.

    Google Scholar 

  50. Bandelow B . Assessing the efficacy of treatments for panic disorder and agoraphobia, II: the panic and agoraphobia scale. Int Clin Psychopharmacol 1995; 10: 73–81.

    Article  CAS  Google Scholar 

  51. Reiss S, Peterson RA, Gursky DM, McNally RJ . Anxiety sensitivity, anxiety frequency and the prediction of fearfulness. Behav Res Ther 1986; 24: 1–8.

    Article  CAS  Google Scholar 

  52. Ernst T, Chang L . Elimination of artifacts in short echo time 1 h mr spectroscopy of the frontal lobe. Magn Reson Med 1996; 36: 462–468.

    Article  CAS  Google Scholar 

  53. MRUI. Magnetic Resonance User Interface 2003 In: Available at http://carbon.uab.es/mrui/mrui_Overview.shtml.

  54. Star-Lack J, Spielman D, Adalsteinsson E, Kurhanewicz J, Terris DJ, Vigneron DB . In vivo lactate editing with simultaneous detection of choline, creatine, naa, and lipid singlets at 1.5 t using press excitation with applications to the study of brain and head and neck tumors. J Magn Reson 1998; 133: 243–254.

    Article  CAS  Google Scholar 

  55. Maddock RJ, Carter CS, Tavano-Hall L, Amsterdam EA . Hypocapnia associated with cardiac stress scintigraphy in chest pain patients with panic disorder. Psychosom Med 1998; 60: 52–55.

    Article  CAS  Google Scholar 

  56. Trivedi B, Danforth WH . Effect of ph on the kinetics of frog muscle phosphofructokinase. J Biol Chem 1966; 241: 4110–4112.

    CAS  PubMed  Google Scholar 

  57. Clarke DD, Sokoloff L . Circulation and energy metabolism of the brain, In: Siegel GJ (ed). Basic Neurochemistry. Lippencott-Raven: Philadelphia, 1999, pp 637–669.

    Google Scholar 

  58. Schurr A . Neuronal energy requirements, In: Walz W (ed). The Neuronal Environment: Brain Homeostasis in Health and Disease. Humana Press: Totowa, NJ, 2002, pp. 25–54.

    Google Scholar 

  59. Hashimoto T, Hussien R, Brooks GA . Colocalization of mct1, cd147, and ldh in mitochondrial inner membrane of l6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 2006; 290: E1237–E1244.

    Article  CAS  Google Scholar 

  60. Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L . Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 1993; 15: 306–312.

    Article  CAS  Google Scholar 

  61. Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA . Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 2003; 23: 658–664.

    Article  CAS  Google Scholar 

  62. Horn EM, Waldrop TG . Suprapontine control of respiration. Respir Physiol 1998; 114: 201–211.

    Article  CAS  Google Scholar 

  63. Teppema LJ, Dahan A . Central chemoreceptors, In: Ward DS, Dahan A, Teppema LJ (eds). Pharmacology and Pathophysiology of the Control of Breathing. Marcel Dekker: New York, 2005.

    Google Scholar 

  64. Chesler M . Regulation and modulation of ph in the brain. Physiol Rev 2003; 83: 1183–1221.

    Article  CAS  Google Scholar 

  65. Scheller D, Kolb J, Tegtmeier F . Lactate and ph change in close correlation in the extracellular space of the rat brain during cortical spreading depression. Neurosci Lett 1992; 135: 83–86.

    Article  CAS  Google Scholar 

  66. Immke DC, McCleskey EW . Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci 2001; 4: 869–870.

    Article  CAS  Google Scholar 

  67. Molliver DC, Immke DC, Fierro L, Pare M, Rice FL, McCleskey EW . Asic3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 2005; 1: 35.

    Article  Google Scholar 

  68. Rondi-Reig L, Lemaigre Dubreuil Y, Martinou JC, Delhaye-Bouchaud N, Caston J, Mariani J . Fear decrease in transgenic mice overexpressing bcl-2 in neurons. Neuroreport 1997; 8: 2429–2432.

    Article  CAS  Google Scholar 

  69. Einat H, Yuan P, Manji HK . Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the bcl-2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 2005; 165: 172–180.

    Article  CAS  Google Scholar 

  70. Murphy E, Imahashi K, Steenbergen C . Bcl-2 regulation of mitochondrial energetics. Trends Cardiovasc Med 2005; 15: 283–290.

    Article  CAS  Google Scholar 

  71. Philibert RA, Nelson JJ, Sandhu HK, Crowe RR, Coryell WH . Association of an exonic ldha polymorphism with altered respiratory response in probands at high risk for panic disorder. Am J Med Genet B Neuropsychiatr Genet 2003; 117: 11–17.

    Article  Google Scholar 

  72. Hovatta I, Tennant RS, Helton R, Marr RA, Singer O, Redwine JM et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 2005; 438: 662–666.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grant no. R21MH69699 to RJM from the National Institute of Mental Health. We thank Shawn Lavoie for his help with data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Maddock.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddock, R., Buonocore, M., Copeland, L. et al. Elevated brain lactate responses to neural activation in panic disorder: a dynamic 1H-MRS study. Mol Psychiatry 14, 537–545 (2009). https://doi.org/10.1038/sj.mp.4002137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002137

Keywords

This article is cited by

Search

Quick links