Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Mode of action of mood stabilizers: is the arachidonic acid cascade a common target?

Abstract

Bipolar disorder is a major medical, social and economic burden worldwide. However, the mechanisms of action of effective antibipolar disorder drugs remain elusive. In this paper, we review studies using a neuropharmacological approach in unanesthetized rats, combined with kinetic, biochemical and molecular biology techniques, showing that chronic administration of three Food and Drug Administration-approved mood stabilizers (lithium, valproate and carbamazepine) at therapeutically relevant doses, selectively target the brain arachidonic acid (AA) cascade. Whereas chronic lithium and carbamazepine decrease the binding activity of activator protein-2 and in turn the transcription, translation and activity of its AA-selective calcium-dependent phospholipase A2 gene product, valproate appears to be a non-competitive inhibitor of long-chain acyl-CoA synthetase. The net overlapping effects of the three drugs are decreased turnover of AA but not of docosahexaenoic acid in rat brain phospholipids, and decreased brain cyclooxygenase-2 and prostaglandin E2. Although these observations support the hypothesis proposed by Rapoport and colleagues that the AA cascade is a common target of mood stabilizers, this hypothesis is not necessarily exclusive of other targets. Targeting the AA cascade with drugs or diet may be a useful therapeutic approach in bipolar disorder, and examining the AA cascade in patients might help in better understanding the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Belmaker RH . Bipolar disorder. N Engl J Med 2004; 351: 476–486.

    Article  CAS  PubMed  Google Scholar 

  2. Benazzi F . Bipolar II disorder: epidemiology, diagnosis and management. CNS Drugs 2007; 21: 727–740.

    Article  CAS  PubMed  Google Scholar 

  3. Narrow WE, Rae DS, Robins LN, Regier DA . Revised prevalence estimates of mental disorders in the United States: using a clinical significance criterion to reconcile 2 surveys’ estimates. Arch Gen Psychiatry 2002; 59: 115–123.

    Article  PubMed  Google Scholar 

  4. Muller-Oerlinghausen B, Berghofer A, Bauer M . Bipolar disorder. Lancet 2002; 359: 241–247.

    Article  PubMed  Google Scholar 

  5. Bostwick JM, Pankratz VS . Affective disorders and suicide risk: a reexamination. Am J Psychiatry 2000; 157: 1925–1932.

    Article  CAS  PubMed  Google Scholar 

  6. Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry 2005; 58: 175–189.

    Article  PubMed  Google Scholar 

  7. Wyatt RJ, Henter I . An economic evaluation of manic-depressive illness—1991. Soc Psychiatry Psychiatr Epidemiol 1995; 30: 213–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kleinman L, Lowin A, Flood E, Gandhi G, Edgell E, Revicki D . Costs of bipolar disorder. Pharmacoeconomics 2003; 21: 601–622.

    Article  PubMed  Google Scholar 

  9. Begley CE, Annegers JF, Swann AC, Lewis C, Coan S, Schnapp WB et al. The lifetime cost of bipolar disorder in the US: an estimate for new cases in 1998. Pharmacoeconomics 2001; 19 (5 Pt 1): 483–495.

    Article  CAS  PubMed  Google Scholar 

  10. Cade JF . Lithium salts in the treatment of psychotic excitement. Med J Aust 1949; 2: 349–352.

    CAS  PubMed  Google Scholar 

  11. Quiroz JA, Singh J, Gould TD, Denicoff KD, Zarate CA, Manji HK . Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol Psychiatry 2004; 9: 756–776.

    Article  CAS  PubMed  Google Scholar 

  12. Harwood AJ, Agam G . Search for a common mechanism of mood stabilizers. Biochem Pharmacol 2003; 66: 179–189.

    Article  CAS  PubMed  Google Scholar 

  13. Coyle JT, Manji HK . Getting balance: drugs for bipolar disorder share target. Nat Med 2002; 8: 557–558.

    Article  CAS  PubMed  Google Scholar 

  14. Camus M, Hennere G, Baron G, Peytavin G, Massias L, Mentre F et al. Comparison of lithium concentrations in red blood cells and plasma in samples collected for TDM, acute toxicity, or acute-on-chronic toxicity. Eur J Clin Pharmacol 2003; 59: 583–587.

    Article  CAS  PubMed  Google Scholar 

  15. Eilers R . Therapeutic drug monitoring for the treatment of psychiatric disorders. Clinical use and cost effectiveness. Clin Pharmacokinet 1995; 29: 442–450.

    Article  CAS  PubMed  Google Scholar 

  16. Bialer M, Levy RH, Perucca E . Does carbamazepine have a narrow therapeutic plasma concentration range? Ther Drug Monti 1998; 20: 56–59.

    Article  CAS  Google Scholar 

  17. Bowden CL, Brugger AM, Swann AC, Calabrese JR, Janicak PG, Petty F et al. Efficacy of divalproex vs lithium and placebo in the treatment of mania. The Depakote Mania Study Group. JAMA 1994; 271: 918–924.

    Article  CAS  PubMed  Google Scholar 

  18. Jacobsen FM . Low-dose valproate: a new treatment for cyclothymia, mild rapid cycling disorders, and premenstrual syndrome. J Clin Psychiatry 1993; 54: 229–234.

    CAS  PubMed  Google Scholar 

  19. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill Jr AH, Murphy RC et al. A comprehensive classification system for lipids. J Lipid Res 2005; 46: 839–861.

    Article  CAS  PubMed  Google Scholar 

  20. Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI . Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 1996; 220: 171–174.

    Article  CAS  PubMed  Google Scholar 

  21. Rapoport SI, Bosetti F . Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 2002; 59: 592–596.

    Article  CAS  PubMed  Google Scholar 

  22. Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA et al. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 1999; 10: 3887–3890.

    Article  CAS  PubMed  Google Scholar 

  23. Lenox RH, Frazer A . Mechanism of Action of Antidepressants and Mood Stabilizers. American College of Neuropsychopharmacology and Lippincott Williams & Wilkins: Baltimore, MD, 2002, pp 1140–1164.

    Google Scholar 

  24. Berridge MJ, Downes CP, Hanley MR . Neural and developmental actions of lithium: a unifying hypothesis. Cell 1989; 59: 411–419.

    Article  CAS  PubMed  Google Scholar 

  25. Harwood AJ . Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatry 2005; 10: 117–126.

    Article  CAS  PubMed  Google Scholar 

  26. Gould TD, Manji HK . Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 2005; 30: 1223–1237.

    Article  CAS  PubMed  Google Scholar 

  27. Manji HK, Chen G . PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry 2002; 7 (Suppl 1): S46–S56.

    Article  CAS  PubMed  Google Scholar 

  28. Gould TD, Manji HK . Signaling networks in the pathophysiology and treatment of mood disorders. J Psychosom Res 2002; 53: 687–697.

    Article  PubMed  Google Scholar 

  29. Salem Jr N, Pawlosky R, Wegher B, Hibbeln J . In vivo conversion of linoleic acid to arachidonic acid in human adults. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 407–410.

    Article  CAS  PubMed  Google Scholar 

  30. Demar Jr JC, Lee HJ, Chang L, Bell JM, Rapoport SI, Bazinet RP . Brain elongation of linoleic acid is a negligible source of the arachidonate in brain phospholipids of adult rats. Biochim Biophys Acta 2006; 1761: 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  31. Su HM, Corso TN, Nathanielsz PW, Brenna JT . Linoleic acid kinetics and conversion to arachidonic acid in the pregnant and fetal baboon. J Lipid Res 1999; 40: 1304–1312.

    CAS  PubMed  Google Scholar 

  32. Igarashi M, DeMar Jr JC, Ma K, Chang L, Bell JM, Rapoport SI . Upregulated liver conversion of alpha-linolenic acid to docosahexaenoic acid in rats on a 15 week n−3 PUFA-deficient diet. J Lipid Res 2007; 48: 152–164.

    Article  CAS  PubMed  Google Scholar 

  33. Rapoport SI, Rao JS, Igarashi M . Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 251–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scott BL, Bazan NG . Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci USA 1989; 86: 2903–2907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aaes-Jørgensen E . Essential fatty acids. Physiol Rev 1961; 41: 1–51.

    Article  PubMed  Google Scholar 

  36. Bazan NG . Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol 2005; 32: 89–103.

    Article  CAS  PubMed  Google Scholar 

  37. Axelrod J . Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem Soc Trans 1990; 18: 503–507.

    Article  CAS  PubMed  Google Scholar 

  38. Felder CC, Kanterman RY, Ma AL, Axelrod J . Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc Natl Acad Sci USA 1990; 87: 2187–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qu Y, Chang L, Klaff J, Balbo A, Rapoport SI . Imaging brain phospholipase A2 activation in awake rats in response to the 5-HT2A/2C agonist (+/−)2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI). Neuropsychopharmacology 2003; 28: 244–252.

    Article  CAS  PubMed  Google Scholar 

  40. Basselin M, Chang L, Bell JM, Rapoport SI . Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 2006; 31: 1659–1674.

    Article  CAS  PubMed  Google Scholar 

  41. Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J . NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 1988; 336: 68–70.

    Article  CAS  PubMed  Google Scholar 

  42. Bhattacharjee AK, Chang L, Lee HJ, Bazinet RP, Seemann R, Rapoport SI . D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats. Psychopharmacology (Berl) 2005; 180: 735–742.

    Article  CAS  Google Scholar 

  43. Vial D, Piomelli D . Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonate-specific phospholipase A2. J Neurochem 1995; 64: 2765–2772.

    Article  CAS  PubMed  Google Scholar 

  44. Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI . Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J Neurochem 2003; 85: 1553–1562.

    Article  CAS  PubMed  Google Scholar 

  45. Felder CC, Williams HL, Axelrod J . A transduction pathway associated with receptors coupled to the inhibitory guanine nucleotide binding protein Gi that amplifies ATP-mediated arachidonic acid release. Proc Natl Acad Sci USA 1991; 88: 6477–6480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W . The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 1996; 384: 39–43.

    Article  CAS  PubMed  Google Scholar 

  47. Hertz R, Magenheim J, Berman I, Bar-Tana J . Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature 1998; 392: 512–516.

    Article  CAS  PubMed  Google Scholar 

  48. Kuehl Jr FA, Humes JL, Tarnoff J, Cirillo VJ, Ham EA . Prostaglandin receptor site: evidence for an essential role in the action of luteinizing hormone. Science 1970; 169: 883–886.

    Article  CAS  PubMed  Google Scholar 

  49. Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA 2001; 98: 6027–6032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimizu T, Wolfe LS . Arachidonic acid cascade and signal transduction. J Neurochem 1990; 55: 1–15.

    Article  CAS  PubMed  Google Scholar 

  51. Lee HJ, Rao JS, Rapoport SI, Bazinet RP . Antimanic therapies target brain arachidonic acid signaling: lessons learned about the regulation of brain fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 239–246.

    Article  CAS  PubMed  Google Scholar 

  52. Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA . Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem 1999; 269: 278–288.

    Article  CAS  PubMed  Google Scholar 

  53. Sun GY, Xu J, Jensen MD, Simonyi A . Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 2004; 45: 205–213.

    Article  CAS  PubMed  Google Scholar 

  54. Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA, Black P et al. Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J Lipid Res 2004; 45: 1958–1961.

    Article  CAS  PubMed  Google Scholar 

  55. Lands WEM, Crawford CG . Enzymes of Membrane Phospholipid Metabolism. Plenum: New York, 1976, pp 3–85.

    Google Scholar 

  56. Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI . A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 1992; 17: 187–214.

    Article  CAS  PubMed  Google Scholar 

  57. Cunnane SC, Ryan MA, Nadeau CR, Bazinet RP, Musa-Veloso K, McCloy U . Why is carbon from some polyunsaturates extensively recycled into lipid synthesis? Lipids 2003; 38: 477–484.

    Article  CAS  PubMed  Google Scholar 

  58. Funk CD . Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  59. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN . Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987; 237: 1171–1176.

    Article  CAS  PubMed  Google Scholar 

  60. Strokin M, Sergeeva M, Reiser G . Role of Ca2+-independent phospholipase A2 and n−3 polyunsaturated fatty acid docosahexaenoic acid in prostanoid production in brain: perspectives for protection in neuroinflammation. Int J Dev Neurosci 2004; 22: 551–557.

    Article  CAS  PubMed  Google Scholar 

  61. Rao JS, Ertley RN, Lee HJ, DeMar Jr JC, Arnold JT, Rapoport SI et al. n−3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 2007; 12: 36–46.

    Article  CAS  PubMed  Google Scholar 

  62. Strokin M, Sergeeva M, Reiser G . Prostaglandin synthesis in rat brain astrocytes is under the control of the n−3 docosahexaenoic acid, released by group VIB calcium-independent phospholipase A(2). J Neurochem 2007; 102: 1771–1782.

    Article  CAS  PubMed  Google Scholar 

  63. Green JT, Orr SK, Bazinet RP . The emerging role of group VI calcium-independent phospholipase A2 in releasing docosahexaenoic acid from brain. J Lipid Res 2008 (in press).

  64. DeGeorge JJ, Nariai T, Yamazaki S, Williams WM, Rapoport SI . Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J Neurochem 1991; 56: 352–355.

    Article  CAS  PubMed  Google Scholar 

  65. Serhan CN, Savill J . Resolution of inflammation: the beginning programs the end. Nat Immunol 2005; 6: 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  66. Rapoport SI, Chang MC, Spector AA . Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 2001; 42: 678–685.

    CAS  PubMed  Google Scholar 

  67. Bazinet RP, Bhattacharjee AK, Lee HJ . Haloperidol targets brain arachidonic acid signaling. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 314–315; author reply 316.

    Article  CAS  PubMed  Google Scholar 

  68. Bazinet RP, Lee HJ, Felder CC, Porter AC, Rapoport SI, Rosenberger TA . Rapid high-energy microwave fixation is required to determine the anandamide (N-arachidonoylethanolamine) concentration of rat brain. Neurochem Res 2005; 30: 597–601.

    Article  CAS  PubMed  Google Scholar 

  69. Deutsch J, Rapoport SI, Purdon AD . Relation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation. Neurochem Res 1997; 22: 759–765.

    Article  CAS  PubMed  Google Scholar 

  70. Golovko MY, Rosenberger TA, Frgeman NJ, Feddersen S, Cole NB, Pribill I et al. Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 2006; 45: 6956–6966.

    Article  CAS  PubMed  Google Scholar 

  71. Patrick CB, McHowat J, Rosenberger TA, Rapoport SI, Murphy EJ . Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart. Am J Physiol Heart Circ Physiol 2005; 288: H2611–H2619.

    Article  CAS  PubMed  Google Scholar 

  72. Chang MC, Arai T, Freed LM, Wakabayashi S, Channing MA, Dunn BB et al. Brain incorporation of [1-11C]arachidonate in normocapnic and hypercapnic monkeys, measured with positron emission tomography. Brain Res 1997; 755: 74–83.

    Article  CAS  PubMed  Google Scholar 

  73. Esposito G, Giovacchini G, Der M, Liow JS, Bhattacharjee AK, Ma K et al. Imaging signal transduction via arachidonic acid in the human brain during visual stimulation, by means of positron emission tomography. Neuroimage 2007; 34: 1342–1351.

    Article  PubMed  Google Scholar 

  74. Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL et al. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab 2002; 22: 1453–1462.

    Article  CAS  PubMed  Google Scholar 

  75. DeMar Jr JC, Ma K, Bell JM, Rapoport SI . Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n−3 polyunsaturated fatty acids. J Neurochem 2004; 91: 1125–1137.

    Article  CAS  PubMed  Google Scholar 

  76. Chen CT, Ma DW, Kim JH, Mount HT, Bazinet RP . The low-density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations. J Lipid Res 2008; 49: 147–152.

    Article  CAS  PubMed  Google Scholar 

  77. Bosetti F, Seemann R, Bell JM, Zahorchak R, Friedman E, Rapoport SI et al. Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. Brain Res Bull 2002; 57: 205–209.

    Article  CAS  PubMed  Google Scholar 

  78. Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E . Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 1999; 24: 399–406.

    Article  CAS  PubMed  Google Scholar 

  79. Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI et al. Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 2002; 7: 845–850.

    Article  CAS  PubMed  Google Scholar 

  80. Weerasinghe GR, Rapoport SI, Bosetti F . The effect of chronic lithium on arachidonic acid release and metabolism in rat brain does not involve secretory phospholipase A2 or lipoxygenase/cytochrome P450 pathways. Brain Res Bull 2004; 63: 485–489.

    Article  CAS  PubMed  Google Scholar 

  81. Rao JS, Rapoport SI, Bosetti F . Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 2005; 30: 2006–2013.

    Article  CAS  PubMed  Google Scholar 

  82. Imagawa M, Chiu R, Karin M . Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 1987; 51: 251–260.

    Article  CAS  PubMed  Google Scholar 

  83. Koide H, Ogita K, Kikkawa U, Nishizuka Y . Isolation and characterization of the epsilon subspecies of protein kinase C from rat brain. Proc Natl Acad Sci USA 1992; 89: 1149–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schindler W . Inventor 5H-dibenz[b,f]azepines, US Patent 2 948 718, USA. 1960.

  85. Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F . Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 2004; 56: 248–254.

    Article  CAS  PubMed  Google Scholar 

  86. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 2006; 59: 401–407.

    Article  CAS  PubMed  Google Scholar 

  87. Rao JS, Bazinet RP, Rapoport SI, Lee HJ . Chronic administration of carbamazepine downregulates AP-2 DNA binding activity and AP-2α protein expression in rat frontal cortex. Biol Psychiatry 2007; 61: 154–161.

    Article  CAS  PubMed  Google Scholar 

  88. McElroy SL, Keck Jr PE, Pope Jr HG, Hudson JI . Valproate in the treatment of bipolar disorder: literature review and clinical guidelines. J Clin Psychopharmacol 1992; 12 (1 Suppl): 42S–52S.

    Article  CAS  PubMed  Google Scholar 

  89. Calabrese JR, Markovitz PJ, Kimmel SE, Wagner SC . Spectrum of efficacy of valproate in 78 rapid-cycling bipolar patients. J Clin Psychopharmacol 1992; 12 (1 Suppl): 53S–56S.

    Article  CAS  PubMed  Google Scholar 

  90. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI . Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 2001; 77: 796–803.

    Article  CAS  PubMed  Google Scholar 

  91. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 2005; 182: 180–185.

    Article  CAS  Google Scholar 

  92. Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI . Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 2003; 85: 690–696.

    Article  CAS  PubMed  Google Scholar 

  93. Szupera Z, Mezei Z, Kis B, Gecse A, Vecsei L, Telegdy G . The effects of valproate on the arachidonic acid metabolism of rat brain microvessels and of platelets. Eur J Pharmacol 2000; 387: 205–210.

    Article  CAS  PubMed  Google Scholar 

  94. Rao JS, Bazinet RP, Rapoport SI, Lee HJ . Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-κB DNA binding activity and COX-2 mRNA. Bipolar Disord 2007; 9: 513–520.

    Article  CAS  PubMed  Google Scholar 

  95. Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA . Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by brain microsomal long-chain fatty acyl-CoA synthetases: relevance to bipolar disorder. Psychopharmacology (Berl) 2006; 184: 122–129.

    Article  CAS  Google Scholar 

  96. Noponen M, Sanfilipo M, Samanich K, Ryer H, Ko G, Angrist B et al. Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol Psychiatry 1993; 34: 641–649.

    Article  CAS  PubMed  Google Scholar 

  97. Dawson E, Gill M, Curtis D, Castle D, Hunt N, Murray R et al. Genetic association between alleles of pancreatic phospholipase A2 gene and bipolar affective disorder. Psychiatr Genet 1995; 5: 177–180.

    Article  CAS  PubMed  Google Scholar 

  98. Jacobsen NJ, Franks EK, Owen MJ, Craddock NJ . Mutational analysis of phospholipase A2A: a positional candidate susceptibility gene for bipolar disorder. Mol Psychiatry 1999; 4: 274–279.

    Article  CAS  PubMed  Google Scholar 

  99. Meira-Lima I, Jardim D, Junqueira R, Ikenaga E, Vallada H . Allelic association study between phospholipase A2 genes and bipolar affective disorder. Bipolar Disord 2003; 5: 295–299.

    Article  CAS  PubMed  Google Scholar 

  100. Hibbeln JR, Palmer JW, Davis JM . Are disturbances in lipid–protein interactions by phospholipase-A2 a predisposing factor in affective illness? Biol Psychiatry 1989; 25: 945–961.

    Article  CAS  PubMed  Google Scholar 

  101. Sublette ME, Russ MJ, Smith GS . Evidence for a role of the arachidonic acid cascade in affective disorders: a review. Bipolar Disord 2004; 6: 95–105.

    Article  CAS  PubMed  Google Scholar 

  102. Horrobin DF, Bennett CN . Depression and bipolar disorder: relationships to impaired fatty acid and phospholipid metabolism and to diabetes, cardiovascular disease, immunological abnormalities, cancer, ageing and osteoporosis. Possible candidate genes. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 217–234.

    Article  CAS  PubMed  Google Scholar 

  103. Ross BM, Hughes B, Kish SJ, Warsh JJ . Serum calcium-independent phospholipase A2 activity in bipolar affective disorder. Bipolar Disord 2006; 8: 265–270.

    Article  CAS  PubMed  Google Scholar 

  104. Lieb J, Karmali R, Horrobin D . Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins Leukot Med 1983; 10: 361–367.

    Article  CAS  PubMed  Google Scholar 

  105. Linnoila M, Whorton AR, Rubinow DR, Cowdry RW, Ninan PT, Waters RN . CSF prostaglandin levels in depressed and schizophrenic patients. Arch Gen Psychiatry 1983; 40: 405–406.

    Article  CAS  PubMed  Google Scholar 

  106. Nishino S, Ueno R, Ohishi K, Sakai T, Hayaishi O . Salivary prostaglandin concentrations: possible state indicators for major depression. Am J Psychiatry 1989; 146: 365–368.

    Article  CAS  PubMed  Google Scholar 

  107. Balsinde J, Balboa MA, Dennis EA . Functional coupling between secretory phospholipase A2 and cyclooxygenase-2 and its regulation by cytosolic group IV phospholipase A2. Proc Natl Acad Sci USA 1998; 95: 7951–7956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Maida ME, Hurley SD, Daeschner JA, Moore AH, Kerry O’banion M . Cytosolic prostaglandin E(2) synthase (cPGES) expression is decreased in discrete cortical regions in psychiatric disease. Brain Res 2006; 1103: 164–172.

    Article  CAS  PubMed  Google Scholar 

  109. Weerasinghe GR, Seemann R, Rapoport SI, Bosetti F . Lithium chloride, administered chronically to rats, does not affect the fractional phosphorylation of brain cytosolic phospholipase A2, while reducing its net protein level. Brain Res Bull 2003; 59: 303–306.

    Article  CAS  PubMed  Google Scholar 

  110. Ozaki N, Chuang DM . Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain. J Neuroehem 1997; 69: 2336–2344.

    Article  CAS  Google Scholar 

  111. Chen G, Yuan P, Hawver DB, Potter WZ, Manji HK . Increase in AP-1 transcription factor DNA binding activity by valproic acid. Neuropsychophamacology 1997; 16: 238–245.

    Article  CAS  Google Scholar 

  112. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E et al. Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 1999; 56: 407–412.

    Article  CAS  PubMed  Google Scholar 

  113. Frangou S, Lewis M, McCrone P . Efficacy of ethyl-eicosapentaenoic acid in bipolar depression: randomised double-blind placebo-controlled study. Br J Psychiatry 2006; 188: 46–50.

    Article  PubMed  Google Scholar 

  114. Keck Jr PE, Mintz J, McElroy SL, Freeman MP, Suppes T, Frye MA et al. Double-blind, randomized, placebo-controlled trials of ethyl-eicosapentanoate in the treatment of bipolar depression and rapid cycling bipolar disorder. Biol Psychiatry 2006; 60: 1020–1022.

    Article  CAS  PubMed  Google Scholar 

  115. Bourre JM . Dietary omega-3 fatty acids and psychiatry: mood, behaviour, stress, depression, dementia and aging. J Nutr Health Aging 2005; 9: 31–38.

    CAS  PubMed  Google Scholar 

  116. Freeman MP . Omega-3 fatty acids in psychiatry: a review. Ann Clin Psychiatry 2000; 12: 159–165.

    Article  CAS  PubMed  Google Scholar 

  117. Stoll AL, Locke CA, Marangell LB, Severus WE . Omega-3 fatty acids and bipolar disorder: a review. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 329–337.

    Article  CAS  PubMed  Google Scholar 

  118. Sinclair AJ, Begg D, Mathai M, Weisinger RS . Omega 3 fatty acids and the brain: review of studies in depression. Asia Pac J Clin Nutr 2007; 16 (Suppl 1): 391–397.

    CAS  PubMed  Google Scholar 

  119. Denomme J, Stark KD, Holub BJ . Directly quantitated dietary (n−3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations. J Nutr 2005; 135: 206–211.

    Article  CAS  PubMed  Google Scholar 

  120. Stark KD, Beblo S, Murthy M, Buda-Abela M, Janisse J, Rockett H et al. Comparison of bloodstream fatty acid composition from African-American women at gestation, delivery, and postpartum. J Lipid Res 2005; 46: 516–525.

    Article  CAS  PubMed  Google Scholar 

  121. Chiu CC, Huang SY, Su KP, Lu ML, Huang MC, Chen CC et al. Polyunsaturated fatty acid deficit in patients with bipolar mania. Eur Neuropsychopharmacol 2003; 13: 99–103.

    Article  CAS  PubMed  Google Scholar 

  122. Zarate Jr CA, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J et al. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann NY Acad Sci 2003; 1003: 273–291.

    Article  CAS  PubMed  Google Scholar 

  123. Zarate Jr CA, Quiroz JA, Singh JB, Denicoff KD, De Jesus G, Luckenbaugh DA et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry 2005; 57: 430–432.

    Article  CAS  PubMed  Google Scholar 

  124. Nudmamud-Thanoi S, Reynolds GP . The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett 2004; 372: 173–177.

    Article  CAS  PubMed  Google Scholar 

  125. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH . Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007; 32: 1888–1902.

    Article  CAS  PubMed  Google Scholar 

  126. Mueller HT, Meador-Woodruff JH . NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 2004; 71: 361–370.

    Article  PubMed  Google Scholar 

  127. Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J . Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 1999; 360: 609–615.

    Article  CAS  PubMed  Google Scholar 

  128. Basselin M, Villacreses NE, Chen M, Bell JM, Rapoport SI . Chronic carbamazepine administration reduces N-methyl-D-aspartate receptor-initiated signaling via arachidonic acid in rat brain. Biol Psychiatry 2007; 62: 934–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ . Chronic NMDA administration to rats up-regulates frontal cortex cytosolic phospholipase A(2) and its transcription factor, activator protein-2. J Neurochem 2007; 106: 1918–1927.

    Article  CAS  Google Scholar 

  130. Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP . Chronic N-methyl-D-aspartate administration increases the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat. J Lipid Res 2008; 49: 162–168.

    Article  CAS  PubMed  Google Scholar 

  131. Basselin M, Chang L, Bell JM, Rapoport SI . Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 2005; 30: 1064–1075.

    Article  CAS  PubMed  Google Scholar 

  132. Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI . Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology 2005; 30: 461–472.

    Article  CAS  PubMed  Google Scholar 

  133. Pearlson GD, Wong DF, Tune LE, Ross CA, Chase GA, Links JM et al. In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry 1995; 52: 471–477.

    Article  CAS  PubMed  Google Scholar 

  134. Manji HK, Lenox RH . Signaling: cellular insights into the pathophysiology of bipolar disorder. Biol Psychiatry 2000; 48: 518–530.

    Article  CAS  PubMed  Google Scholar 

  135. Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 2000; 4: 83–91.

    Article  CAS  PubMed  Google Scholar 

  136. Ertley RN, Bazinet RP, Lee HJ, Rapoport SI, Rao JS . Chronic treatment with mood-stabilizers increase membrane GRK3 in rat frontal cortex. Biol Psychiatry 2007; 61: 246–249.

    Article  CAS  PubMed  Google Scholar 

  137. Lee H, Villacreses NE, Rapoport SI, Rosenberger TA . In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 2004; 91: 936–945.

    Article  CAS  PubMed  Google Scholar 

  138. Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN et al. Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 2004; 88: 1168–1178.

    Article  CAS  PubMed  Google Scholar 

  139. Basselin M, Villacreses N, Lee HJ, Bell JM, Rapoport SI . Chronic lithium administration attenuates upregulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem 2007; 102: 761–772.

    Article  CAS  PubMed  Google Scholar 

  140. Liu HC, Yang YY, Chou YM, Chen KP, Shen WW, Leu SJ . Immunologic variables in acute mania of bipolar disorder. J Neuroimmunol 2004; 150: 116–122.

    Article  CAS  PubMed  Google Scholar 

  141. Huang TL, Lin FC . High-sensitivity C-reactive protein levels in patients with major depressive disorder and bipolar mania. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 370–372.

    Article  CAS  PubMed  Google Scholar 

  142. O’Brien SM, Scully P, Scott LV, Dinan TG . Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord 2006; 90: 263–267.

    Article  PubMed  CAS  Google Scholar 

  143. DeMar Jr JC, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI . One generation of n−3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 2006; 47: 172–180.

    Article  CAS  PubMed  Google Scholar 

  144. Rao JS, Ertley RN, Demar Jr JC, Rapoport SI, Bazinet RP, Lee HJ . Dietary n−3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry 2007; 12: 151–157.

    Article  CAS  PubMed  Google Scholar 

  145. Solomon DA, Ryan CE, Keitner GI, Miller IW, Shea MT, Kazim A et al. A pilot study of lithium carbonate plus divalproex sodium for the continuation and maintenance treatment of patients with bipolar I disorder. J Clin Psychiatry 1997; 58: 95–99.

    Article  CAS  PubMed  Google Scholar 

  146. Yatham LN, Kennedy SH, O’Donovan C, Parikh S, MacQueen G, McIntyre R et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: consensus and controversies. Bipolar Disord 2005; 7 (Suppl 3): 5–69.

    Article  PubMed  Google Scholar 

  147. Yury CA, Fisher JE . Meta-analysis of the effectiveness of atypical antipsychotics for the treatment of behavioural problems in persons with dementia. Psychother Psychosom 2007; 76: 213–218.

    Article  PubMed  Google Scholar 

  148. Cambronero JC, Rivas FJ, Borrell J, Guaza C . Role of arachidonic acid metabolism on corticotropin-releasing factor (CRF)-release induced by interleukin-1 from superfused rat hypothalami. J Neuroimmunol 1992; 39: 57–66.

    Article  CAS  PubMed  Google Scholar 

  149. Allison JH, Stewart MA . Reduced brain inositol in lithium-treated rats. Nat New Biol 1971; 233: 267–268.

    Article  CAS  PubMed  Google Scholar 

  150. Moore GJ, Bebchuk JM, Parrish JK, Faulk MW, Arfken CL, Strahl-Bevacqua J et al. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry 1999; 156: 1902–1908.

    CAS  PubMed  Google Scholar 

  151. Ketterer MW, Brymer J, Rhoads K, Kraft P, Lovallo WR . Is aspirin, as used for antithrombosis, an emotion-modulating agent? J Psychosom Res 1996; 40: 53–58.

    Article  CAS  PubMed  Google Scholar 

  152. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006; 11: 680–684.

    Article  CAS  PubMed  Google Scholar 

  153. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN et al. Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 2008; 23: 87–94.

    Article  CAS  PubMed  Google Scholar 

  154. Constantinou-Kokotou V, Peristeraki A, Kokotos CG, Six DA, Dennis EA . Synthesis and activity of 2-oxoamides containing long chain beta-amino acids. J Pept Sci 2005; 11: 431–435.

    Article  CAS  PubMed  Google Scholar 

  155. Lewin TM, Kim JH, Granger DA, Vance JE, Coleman RA . Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem 2001; 276: 24674–24679.

    Article  CAS  PubMed  Google Scholar 

  156. Weis MT, Crumley JL, Young LH, Stallone JN . Inhibiting long chain fatty acyl CoA synthetase increases basal and agonist-stimulated NO synthesis in endothelium. Cardiovasc Res 2004; 63: 338–346.

    Article  CAS  PubMed  Google Scholar 

  157. Van Horn CG, Caviglia JM, Li LO, Wang S, Granger DA, Coleman RA . Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 2005; 44: 1635–1642.

    Article  CAS  PubMed  Google Scholar 

  158. Calabrese JR, Keck Jr PE, McElroy SL, Shelton MD . A pilot study of topiramate as monotherapy in the treatment of acute mania. J Clin Psychopharmacol 2001; 21: 340–342.

    Article  CAS  PubMed  Google Scholar 

  159. Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker RH . Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm 2002; 109: 433–440.

    Article  CAS  PubMed  Google Scholar 

  160. York DA, Singer L, Thomas S, Bray GA . Effect of topiramate on body weight and body composition of Osborne–Mendel rats fed a high-fat diet: alterations in hormones, neuropeptide, and uncoupling-protein mRNAs. Nutrition 2000; 16: 967–975.

    Article  CAS  PubMed  Google Scholar 

  161. Ghelardoni S, Bazinet RP, Rapoport SI, Bosetti F . Topiramate does not alter expression in rat brain of enzymes of arachidonic acid metabolism. Psychopharmacology (Berl) 2005; 180: 523–529.

    Article  CAS  Google Scholar 

  162. Lee HJ, Ghelardoni S, Chang L, Bosetti F, Rapoport SI, Bazinet RP . Topiramate does not alter the kinetics of arachidonic or docosahexaenoic acid in brain phospholipids of the unanesthetized rat. Neurochem Res 2005; 30: 677–683.

    Article  CAS  PubMed  Google Scholar 

  163. Kushner SF, Khan A, Lane R, Olson WH . Topiramate monotherapy in the management of acute mania: results of four double-blind placebo-controlled trials. Bipolar Disord 2006; 8: 15–27.

    Article  CAS  PubMed  Google Scholar 

  164. Bowden CL, Calabrese JR, Sachs G, Yatham LN, Asghar SA, Hompland M et al. A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch Gen Psychiatry 2003; 60: 392–400.

    Article  CAS  PubMed  Google Scholar 

  165. Calabrese JR, Bowden CL, Sachs G, Yatham LN, Behnke K, Mehtonen OP et al. A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently depressed patients with bipolar I disorder. J Clin Psychiatry 2003; 64: 1013–1024.

    Article  CAS  PubMed  Google Scholar 

  166. Calabrese JR, Rapport DJ, Youngstrom EA, Jackson K, Bilali S, Findling RL . New data on the use of lithium, divalproate, and lamotrigine in rapid cycling bipolar disorder. Eur Psychiatry 2005; 20: 92–95.

    Article  CAS  PubMed  Google Scholar 

  167. Fatemi SH, Rapport DJ, Calabrese JR, Thuras P . Lamotrigine in rapid-cycling bipolar disorder. J Clin Psychiatry 1997; 58: 522–527.

    Article  CAS  PubMed  Google Scholar 

  168. Arban R, Maraia G, Brackenborough K, Winyard L, Wilson A, Gerrard P et al. Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behav Brain Res 2005; 158: 123–132.

    Article  CAS  PubMed  Google Scholar 

  169. Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP . Chronic lamotrigine does not alter the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat: implications for the treatment of bipolar disorder. Psychopharmacology (Berl) 2007; 193: 467–474.

    Article  CAS  Google Scholar 

  170. Lee HJ, Ertley RN, Rapoport SI, Bazinet RP, Rao JS . Chronic administration of lamotrigine downregulates COX-2 mRNA and protein in rat frontal cortex. Neurochem Res 2007; (e-pub ahead of print December 14).

  171. Masoliver E, Menoyo A, Perez V, Volpini V, Rio ED, Perez J et al. Serotonin transporter linked promoter (polymorphism) in the serotonin transporter gene may be associated with antidepressant-induced mania in bipolar disorder. Psychiatr Genet 2006; 16: 25–29.

    Article  PubMed  Google Scholar 

  172. Ghaemi SN, Hsu DJ, Soldani F, Goodwin FK . Antidepressants in bipolar disorder: the case for caution. Bipolar Disord 2003; 5: 421–433.

    Article  CAS  PubMed  Google Scholar 

  173. Ghaemi SN, Rosenquist KJ, Ko JY, Baldassano CF, Kontos NJ, Baldessarini RJ . Antidepressant treatment in bipolar versus unipolar depression. Am J Psychiatry 2004; 161: 163–165.

    Article  PubMed  Google Scholar 

  174. Post RM, Altshuler LL, Leverich GS, Frye MA, Nolen WA, Kupka RW et al. Mood switch in bipolar depression: comparison of adjunctive venlafaxine, bupropion and sertraline. Br J Psychiatry 2006; 189: 124–131.

    Article  CAS  PubMed  Google Scholar 

  175. Lee HJ, Rao JS, Ertley RN, Chang L, Rapoport SI, Bazinet RP . Chronic fluoxetine increases cytosolic phospholipase A2 activity and arachidonic acid turnover in brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 2006; 190: 103–115.

    Article  CAS  Google Scholar 

  176. Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP . Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 2006; 6: 413–420.

    Article  CAS  PubMed  Google Scholar 

  177. Kucia K, Malecki A, Gabryel B, Trzeciak HI . Effect of antidepressants on the phospholipase A2 activity in plasma membranes of the rat brain cortex. Pol J Pharmacol 2003; 55: 5–15.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Drs Mireille Basselin and Francesca Bosetti are thanked for critically reviewing the paper. This study was supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health (JSR, H-JL, SIR and RPB) and a grant from the Natural Sciences and Engineering Research Council of Canada (RPB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Bazinet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, J., Lee, HJ., Rapoport, S. et al. Mode of action of mood stabilizers: is the arachidonic acid cascade a common target?. Mol Psychiatry 13, 585–596 (2008). https://doi.org/10.1038/mp.2008.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.31

Keywords

This article is cited by

Search

Quick links