Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of Piccolo as a regulator of behavioral plasticity and dopamine transporter internalization

Abstract

Dopamine transporter (DAT) internalization is a mechanism underlying the decreased dopamine reuptake caused by addictive drugs like methamphetamine (METH). We found that Piccolo, a presynaptic scaffolding protein, was overexpressed in the nucleus accumbens (NAc) of the mice repeatedly administrated with METH. Piccolo downexpression by antisense technique augmented METH-induced behavioral sensitization, conditioned reward and synaptic dopamine accumulation in NAc. Expression of Piccolo C2A domain attenuated METH-induced inhibition of dopamine uptake in PC12 cells expressing human DAT. Consistent with this, it slowed down the accelerated DAT internalization induced by METH, thus maintaining the presentation of plasmalemmal DAT. In immunostaining and structural modeling Piccolo C2A domain displays an unusual feature of sequestering membrane phosphatidylinositol 4,5-bisphosphate, which may underlie its role in modulating DAT internalization. Together, our results indicate that Piccolo upregulation induced by METH represents a homeostatic response in the NAc to excessive dopaminergic transmission. Piccolo C2A domain may act as a cytoskeletal regulator for plasmalemmal DAT internalization, which may underlie its contributions in behavioral plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA 2005; 102: 3495–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A . Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 1995; 15: 4102–4108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sandoval V, Riddle EL, Ugarte YV, Hanson GR, Fleckenstein AE . Methamphetamine-induced rapid and reversible changes in dopamine transporter function: an in vitro model. J Neurosci 2001; 21: 1413–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holton KL, Loder MK, Melikian HE . Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat Neurosci 2005; 8: 881–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sorkina T, Hoover BR, Zahniser NR, Sorkin A . Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism. Traffic 2005; 6: 157–170.

    Article  CAS  PubMed  Google Scholar 

  6. Loder MK, Melikian HE . The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem 2003; 278: 22168–22174.

    Article  CAS  PubMed  Google Scholar 

  7. Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA 2000; 97: 6850–6855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A . Oligomerization of dopamine transporters visualized in living cells by fluorescence resonance energy transfer microscopy. J Biol Chem 2003; 278: 28274–28283.

    Article  CAS  PubMed  Google Scholar 

  9. Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 2001; 29: 131–143.

    Article  CAS  PubMed  Google Scholar 

  10. Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM et al. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 2000; 25: 203–214.

    Article  CAS  PubMed  Google Scholar 

  11. Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED et al. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 2003; 278: 20268–20277.

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW . Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 1999; 147: 151–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garner CC, Nash J, Huganir RL . PDZ domains in synapse assembly and signaling. Trends Cell Biol 2000; 10: 274–280.

    Article  CAS  PubMed  Google Scholar 

  14. Garcia J, Gerber SH, Sugita S, Sudhof TC, Rizo J . A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 2004; 11: 45–53.

    Article  CAS  PubMed  Google Scholar 

  15. Gerber SH, Garcia J, Rizo J, Sudhof TC . An unusual C(2)-domain in the active-zone protein piccolo: implications for Ca(2+) regulation of neurotransmitter release. EMBO J 2001; 20: 1605–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cremona O, De Camilli P . Phosphoinositides in membrane traffic at the synapse. J Cell Sci 2001; 114: 1041–1052.

    CAS  PubMed  Google Scholar 

  17. Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T et al. Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 2002; 277: 50497–50502.

    Article  CAS  PubMed  Google Scholar 

  18. Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T et al. Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 2004; 24: 2212–2225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K et al. The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci USA 2004; 101: 3650–3655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melikian HE, Buckley KM . Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci 1999; 19: 7699–7710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML et al. Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 2004; 42: 269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fenster SD, Garner CC . Gene structure and genetic localization of the PCLO gene encoding the presynaptic active zone protein Piccolo. Int J Dev Neurosci 2002; 20: 161–171.

    Article  CAS  PubMed  Google Scholar 

  23. Quick MW . Regulating the conducting states of a mammalian serotonin transporter. Neuron 2003; 40: 537–549.

    Article  CAS  PubMed  Google Scholar 

  24. Deken SL, Beckman ML, Boos L, Quick MW . Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat Neurosci 2002; 3: 998–1003.

    Article  Google Scholar 

  25. Shapira M, Zhai RG, Dresbach T, Bresler T, Torres VI, Gundelfinger ED et al. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 2003; 38: 237–252.

    Article  CAS  PubMed  Google Scholar 

  26. Lee KH, Kim MY, Kim DH, Lee YS . Syntaxin 1A and receptor for activated C kinase interact with the N-terminal region of human dopamine transporter. Neurochem Res 2004; 29: 1405–1409.

    Article  CAS  PubMed  Google Scholar 

  27. Weidenhofer J, Bowden NA, Scott RJ, Tooney PA . Altered gene expression in the amygdala in schizophrenia: up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 2006; 31: 243–250.

    Article  CAS  PubMed  Google Scholar 

  28. Suh BC, Hille B . Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 2005; 15: 370–378.

    Article  CAS  PubMed  Google Scholar 

  29. Kanzaki M, Furukawa M, Raab W, Pessin JE . Phosphatidylinositol 4,5-bisphosphate regulates adipocyte actin dynamics and GLUT4 vesicle recycling. J Biol Chem 2004; 279: 30622–30633.

    Article  CAS  PubMed  Google Scholar 

  30. Slepnev VI, De Camilli P . Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 2000; 1: 161–172.

    Article  CAS  PubMed  Google Scholar 

  31. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T . Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291: 1047–1051.

    Article  CAS  PubMed  Google Scholar 

  32. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P . GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 2000; 86: 2188–2207.

    Google Scholar 

  33. Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW . Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 2004; 43: 207–219.

    Article  CAS  PubMed  Google Scholar 

  34. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M . Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA 2003; 100: 13964–13969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daniels GM, Amara SG . Regulated trafficking of the human dopamine transporter-clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem 1999; 274: 35794–35801.

    Article  CAS  PubMed  Google Scholar 

  36. Sorkina T, Miranda M, Dionne KR, Hoover BR, Zahniser NR, Sorkin A . RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis. J Neurosci 2006; 26: 8195–8205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nebl T, Oh SW, Luna EJ . Membrane cytoskeleton: PIP(2) pulls the strings. Curr Biol 2000; 10: R351–R354.

    Article  CAS  PubMed  Google Scholar 

  38. Gruenberg J . Lipids in endocytic membrane transport and sorting. Curr Opin Cell Biol 2003; 15: 382–388.

    Article  CAS  PubMed  Google Scholar 

  39. Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI et al. Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 2001; 30: 121–134.

    Article  CAS  PubMed  Google Scholar 

  40. Shao X, Li C, Fernandez I, Zhang X, Sudhof TC, Rizo J . Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 1997; 18: 133–142.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr Seino Susumu and Dr Shibasaki Takao (Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Japan) for the kind gifts of pCMV-HA-Piccolo-PDZ, pCMV-Myc-Piccolo-C2A and pGEX4T-GST-p13192. We thank Mrs Nobushi Hamada and Yoshiyuki Nakamura radioisotope Center Medical Branch, Nagoya University School of Medicine for technical support. This study was supported in part by a Grant-in-Aid for Science Research and Special Coordination Funds for Promoting Science and Technology, Target-Oriented Brain Science Research Program and 21st Century Center of Excellence Program ‘Integrated Molecular Medicine for Neuronal and Neoplastic Disorders’ and ‘Academic Frontier Project for Private Universities (2007–2011), from the Ministry of Education, Culture, Sports, Science and Technology of Japan; by a Grant-in-Aid for Health Science Research on Regulatory Science of Pharmaceuticals and Medical Devices, and Comprehensive Research on Aging and Health from the Ministry of Health, Labor and Welfare of Japan; by a Smoking Research Foundation Grant for Biomedical Research and Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Nabeshima.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cen, X., Nitta, A., Ibi, D. et al. Identification of Piccolo as a regulator of behavioral plasticity and dopamine transporter internalization. Mol Psychiatry 13, 451–463 (2008). https://doi.org/10.1038/sj.mp.4002132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002132

Keywords

This article is cited by

Search

Quick links