Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation

Abstract

Neural stem cells give rise to new hippocampal neurons throughout adulthood, and defects in neurogenesis may predispose an individual to mood disorders, such as major depression. Our understanding of the signals controlling this process is limited, so we explored potential pathways regulating adult hippocampal progenitor (AHP) proliferation and neuronal differentiation. We demonstrate that the mood stabilizer lithium directly expands pools of AHPs in vitro, and induces them to become neurons at therapeutically relevant concentrations. We show that these effects are independent of inositol monophosphatase, but dependent on Wnt pathway components. Both downregulation of glycogen synthase kinase-3β, a lithium-sensitive component of the canonical Wnt signaling pathway, and elevated β-catenin, a downstream component of the same pathway produce effects similar to lithium. In contrast, RNAi-mediated inhibition of β-catenin abolishes the proliferative effects of lithium, suggesting that Wnt signal transduction may underlie lithium's therapeutic effect. Together, these data strengthen the connection between psychopharmacologic treatment and the process of adult neurogenesis, while also suggesting the pursuit of modulators of Wnt signaling as a new class of more effective mood stabilizers/antidepressants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH . Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030.

    Article  CAS  PubMed  Google Scholar 

  2. Brezun JM, Daszuta A . Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 1999; 89: 999.

    Article  CAS  PubMed  Google Scholar 

  3. Brown ES, Rush AJ, McEwen BS . Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 1999; 21: 474.

    Article  CAS  PubMed  Google Scholar 

  4. Blows WT . The neurobiology of antidepressants. J Neurosci Nurs 2000; 32: 177.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs BL, Praag H, Gage FH . Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000; 5: 262.

    Article  CAS  PubMed  Google Scholar 

  6. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK . Enhancement of hippocampal neurogenesis by lithium. J Neurochem 2000; 75: 1729.

    Article  CAS  PubMed  Google Scholar 

  8. Son H, Yu IT, Hwang SJ, Kim JS, Lee SH, Lee YS et al. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem 2003; 85: 872.

    Article  CAS  PubMed  Google Scholar 

  9. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S . Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berlin) 2001; 158: 100.

    Article  CAS  Google Scholar 

  10. Lee J, Fukumoto H, Orne J, Klucken J, Raju S, Vanderburg CR et al. Decreased levels of BDNF protein in Alzheimer temporal cortex are independent of BDNF polymorphisms. Exp Neurol 2005; 194: 91.

    Article  CAS  PubMed  Google Scholar 

  11. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phiel CJ, Klein PS . Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001; 41: 789.

    Article  CAS  PubMed  Google Scholar 

  13. Kim JS, Chang MY, Yu IT, Kim JH, Lee SH, Lee YS et al. Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 2004; 89: 324.

    Article  CAS  PubMed  Google Scholar 

  14. Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 2000; 28: 69.

    Article  CAS  PubMed  Google Scholar 

  15. Berridge MJ, Irvine RF . Inositol phosphates and cell signalling. Nature 1989; 341: 197.

    Article  CAS  PubMed  Google Scholar 

  16. Williams RS, Cheng L, Mudge AW, Harwood AJ . A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417: 292.

    Article  CAS  PubMed  Google Scholar 

  17. Harwood AJ . Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatry 2005; 10: 117.

    Article  CAS  PubMed  Google Scholar 

  18. Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R . Wnt3a−/−-like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 1999; 13: 709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R . Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 2000; 127: 469.

    CAS  PubMed  Google Scholar 

  20. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH . Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004; 10: 55.

    Article  CAS  PubMed  Google Scholar 

  21. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409.

    Article  CAS  PubMed  Google Scholar 

  22. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005; 437: 1370.

    Article  CAS  PubMed  Google Scholar 

  23. Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH . Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999; 19: 8487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Monje ML, Toda H, Palmer TD . Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302: 1760.

    Article  CAS  PubMed  Google Scholar 

  25. Barth AI, Stewart DB, Nelson WJ . T cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant beta-catenin. Proc Natl Acad Sci USA 1999; 96: 4947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K et al. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 1989; 79: 269.

    Article  CAS  PubMed  Google Scholar 

  27. Yu X, Malenka RC . Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 2003; 6: 1169.

    Article  CAS  PubMed  Google Scholar 

  28. Rapoport SI, Bosetti F . Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 2002; 59: 592–596.

    Article  CAS  PubMed  Google Scholar 

  29. Mai L, Jope RS, Li X . BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents 1483. J Neurochem 2002; 82: 75.

    Article  CAS  PubMed  Google Scholar 

  30. Ray J, Peterson DA, Schinstine M, Gage FH . Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci USA 1993; 90: 3602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 1995; 92: 11879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen G, Huang LD, Jiang YM, Manji HK . The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem 1999; 72: 1327.

    Article  CAS  PubMed  Google Scholar 

  33. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH . Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004; 101: 16659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laeng P, Pitts RL, Lemire AL, Drabik CE, Weiner A, Tang H et al. The mood stabilizer Valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem 2004; 91: 238.

    Article  CAS  PubMed  Google Scholar 

  35. Pierce SB, Kimelman D . Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 1995; 121: 755.

    CAS  PubMed  Google Scholar 

  36. Fischer L, Boland G, Tuan RS . Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells 1549. J Biol Chem 2002; 277: 30870.

    Article  CAS  PubMed  Google Scholar 

  37. Jope RS, Johnson GV . The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004; 29: 95.

    Article  CAS  PubMed  Google Scholar 

  38. Gomez DP, Velasco G, Guzman M . The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt 5210. Biochem J 2000; 347 (Part 2): 369.

    Article  Google Scholar 

  39. Molina-Holgado E, Vela JM, Arevalo-Martin A, Almazan G, Molina-Holgado F, Borrell J et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling 661. J Neurosci 2002; 22: 9742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ozaita A, Puighermanal E, Maldonado R . Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J Neurochem 2007; 102: 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  41. Lee SM, Tole S, Grove E, McMahon AP . A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 2000; 127: 457.

    CAS  PubMed  Google Scholar 

  42. Gould TD, Einat H, O'Donnell KC, Picchini AM, Schloesser RJ, Manji HK . beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors. Neuropsychopharmacology 2007; 32: 2173–2183.

    Article  CAS  PubMed  Google Scholar 

  43. Hashimoto R, Senatorov V, Kanai H, Leeds P, Chuang DM . Lithium stimulates progenitor proliferation in cultured brain neurons. Neuroscience 2003; 117: 55.

    Article  CAS  PubMed  Google Scholar 

  44. Brandish PE, Su M, Holder DJ, Hodor P, Szumiloski J, Kleinhanz RR et al. Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex. Neuron 2005; 45: 861.

    Article  CAS  PubMed  Google Scholar 

  45. Meijer L, Flajolet M, Greengard P . Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 2004; 25: 471.

    Article  CAS  PubMed  Google Scholar 

  46. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805.

    Article  CAS  PubMed  Google Scholar 

  47. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR . Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation (see comments). Nature 2000; 406: 86.

    Article  CAS  PubMed  Google Scholar 

  48. Gomez-Sintes R, Hernandez F, Bortolozzi A, Artigas F, Avila J, Zaratin P et al. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J 2007; 26: 2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Angela Barth, Gary Nolan, Richard Mulligan and Anna Kenney for gifts of plasmids and/or cell lines; Hiroki Toda for assistance with ELISA assays; and Xiang Yu, Karl Deisseroth, Rachael Simonoff, Brett Abrahams, Maren Englehardt, Gena Kenopka, as well as other members of the Palmer and Geschwind labs for helpful discussions. This work was supported by Sierra Pacific MIRECC/VA and NIH-T32MH1993808 fellowships, NARSAD, APA/Wyeth Young Investigator Awards and NIMH K08MH74362 (EMW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E M Wexler.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wexler, E., Geschwind, D. & Palmer, T. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry 13, 285–292 (2008). https://doi.org/10.1038/sj.mp.4002093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002093

Keywords

This article is cited by

Search

Quick links