Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene

Abstract

Neuregulin and the neuregulin receptor ERBB4 have been genetically and functionally implicated in schizophrenia. In this study, we used the yeast two-hybrid system to identify proteins that interact with ERBB4, to identify genes and pathways that might contribute to schizophrenia susceptibility. We identified the MAGI scaffolding proteins as ERBB4-binding proteins. After validating the interaction of MAGI proteins with ERBB4 in mammalian cells, we demonstrated that ERBB4 expression, alone or in combination with ERBB2 or ERBB3, led to the tyrosine phosphorylation of MAGI proteins, and that this could be further enhanced with receptor activation by neuregulin. As MAGI proteins were previously shown to interact with receptor phosphotyrosine phosphatase β/ζ (RPTPβ), we postulated that simultaneous binding of MAGI proteins to RPTPβ and ERBB4 forms a phosphotyrosine kinase/phosphotyrosine phosphatase complex. Studies in cultured cells confirmed both a spatial and functional association between ERBB4, MAGI and RPTPβ. Given the evidence for this functional association, we examined the genes coding for MAGI and RPTPβ for genetic association with schizophrenia in a Caucasian United Kingdom case–control cohort (n=1400). PTPRZ1, which codes for RPTPβ, showed significant, gene-wide and hypothesis-wide association with schizophrenia in our study (best individual single-nucleotide polymorphism allelic P=0.0003; gene-wide P=0.0064; hypothesis-wide P=0.026). The data provide evidence for a role of PTPRZ1, and for RPTPβ signaling abnormalities, in the etiology of schizophrenia. Furthermore, the data indicate a role for RPTPβ in the modulation of ERBB4 signaling that may in turn provide further support for an important role of neuregulin/ERBB4 signaling in the molecular basis of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Norton N, Williams HJ, Owen MJ . An update on the genetics of schizophrenia. Curr Opin Psychiatry 2006; 19: 158–164.

    Article  PubMed  Google Scholar 

  3. Li D, Collier DA, He L . Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet 2006; 15: 1995–2002.

    Article  CAS  PubMed  Google Scholar 

  4. Munafo MR, Thiselton DL, Clark TG, Flint J . Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol Psychiatry 2006; 11: 539–546.

    Article  CAS  PubMed  Google Scholar 

  5. Steinthorsdottir V, Stefansson H, Ghosh S, Birgisdottir B, Bjornsdottir S, Fasquel AC et al. Multiple novel transcription initiation sites for NRG1. Gene 2004; 342: 97–105.

    Article  CAS  PubMed  Google Scholar 

  6. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004; 9: 299–307.

    Article  CAS  PubMed  Google Scholar 

  7. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc Natl Acad Sci USA 2006; 103: 6747–6752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buonanno A, Fischbach GD . Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 2001; 11: 287–296.

    Article  CAS  PubMed  Google Scholar 

  9. Carpenter G . Nuclear localization and possible functions of receptor tyrosine kinases. Curr Opin Cell Biol 2003; 15: 143–148.

    Article  CAS  PubMed  Google Scholar 

  10. Citri A, Skaria KB, Yarden Y . The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 2003; 284: 54–65.

    Article  CAS  PubMed  Google Scholar 

  11. Jones FE, Golding JP, Gassmann M . ErbB4 signaling during breast and neural development: novel genetic models reveal unique ErbB4 activities. Cell Cycle 2003; 2: 555–559.

    CAS  PubMed  Google Scholar 

  12. Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci 2004; 7: 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  13. Ghashghaei HT, Weber J, Pevny L, Schmid R, Schwab MH, Lloyd KC et al. The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci USA 2006; 103: 1930–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steiner H, Blum M, Kitai ST, Fedi P . Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat. Exp Neurol 1999; 159: 494–503.

    Article  CAS  PubMed  Google Scholar 

  15. Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R . The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 142–148.

    Article  CAS  Google Scholar 

  16. Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 96–101.

    Article  CAS  Google Scholar 

  17. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  PubMed  Google Scholar 

  18. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aston C, Jiang L, Sokolov BP . Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004; 77: 858–866.

    Article  CAS  PubMed  Google Scholar 

  20. Katsel P, Davis KL, Haroutunian V . Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 2005; 79: 157–173.

    Article  PubMed  Google Scholar 

  21. Katsel PL, Davis KL, Haroutunian V . Large-scale microarray studies of gene expression in multiple regions of the brain in schizophrenia and Alzheimer's disease. Int Rev Neurobiol 2005; 63: 41–82.

    Article  CAS  PubMed  Google Scholar 

  22. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA> receptor hypofunction in schizophrenia. Nat Med 2006; 12: 824–828.

    Article  CAS  PubMed  Google Scholar 

  23. Rimer M, Barrett DW, Maldonado MA, Vock VM, Gonzalez-Lima F . Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. Neuroreport 2005; 16: 271–275.

    Article  CAS  PubMed  Google Scholar 

  24. O'Tuathaigh CM, O'Sullivan GJ, Kinsella A, Harvey RP, Tighe O, Croke DT et al. Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. Neuroreport 2006; 17: 79–83.

    Article  CAS  PubMed  Google Scholar 

  25. O'Tuathaigh CM, Babovic D, O'Meara G, Clifford JJ, Croke DT, Waddington JL . Susceptibility genes for schizophrenia: Characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 2007; 31: 60–78.

    Article  CAS  PubMed  Google Scholar 

  26. Fields S, Song O . A novel genetic system to detect protein-protein interactions. Nature 1989; 340: 245–246.

    Article  CAS  PubMed  Google Scholar 

  27. Montgomery JM, Zamorano PL, Garner CC . MAGUKs in synapse assembly and function: an emerging view. Cell Mol Life Sci 2004; 61: 911–929.

    Article  CAS  PubMed  Google Scholar 

  28. Adamsky K, Arnold K, Sabanay H, Peles E . Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 2003; 116: 1279–1289.

    Article  CAS  PubMed  Google Scholar 

  29. Fukada M, Kawachi H, Fujikawa A, Noda M . Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases: Isolation of substrates for protein tyrosine phosphatase receptor type z. Methods 2005; 35: 54–63.

    Article  CAS  PubMed  Google Scholar 

  30. Kainulainen V, Sundvall M, Maatta JA, Santiestevan E, Klagsbrun M, Elenius K . A natural ErbB4 isoform that does not activate phosphoinositide 3-kinase mediates proliferation but not survival or chemotaxis. J Biol Chem 2000; 275: 8641–8649.

    Article  CAS  PubMed  Google Scholar 

  31. Kozak M . An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 1987; 15: 8125–8148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rio C, Buxbaum JD, Peschon JJ, Corfas G . Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem 2000; 275: 10379–10387.

    Article  CAS  PubMed  Google Scholar 

  33. Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A et al. Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 2006; 63: 18–24.

    Article  CAS  PubMed  Google Scholar 

  34. Moskvina V, Holmans P, Schmidt KM, Craddock N . Design of case-controls studies with unscreened controls. Ann Hum Genet 2005; 69: 566–576.

    Article  CAS  PubMed  Google Scholar 

  35. Norton N, Williams NM, Williams HJ, Spurlock G, Kirov G, Morris DW et al. Universal, robust, highly quantitative SNP allele frequency measurement in DNA pools. Hum Genet 2002; 110: 471–478.

    Article  CAS  PubMed  Google Scholar 

  36. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  37. Nyholt DR . A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004; 74: 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS . Truncated product method for combining P-values. Genet Epidemiol 2002; 22: 170–185.

    Article  CAS  PubMed  Google Scholar 

  39. Fukada M, Fujikawa A, Chow JP, Ikematsu S, Sakuma S, Noda M . Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS Lett 2006; 580: 4051–4056.

    Article  CAS  PubMed  Google Scholar 

  40. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  41. Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci USA 2000; 97: 4233–4238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM . Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res 2001; 61: 4985–4989.

    CAS  PubMed  Google Scholar 

  43. Paul S, Lombroso PJ . Receptor and nonreceptor protein tyrosine phosphatases in the nervous system. Cell Mol Life Sci 2003; 60: 2465–2482.

    Article  CAS  PubMed  Google Scholar 

  44. Barnea G, Grumet M, Milev P, Silvennoinen O, Levy JB, Sap J et al. Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin. J Biol Chem 1994; 269: 14349–14352.

    CAS  PubMed  Google Scholar 

  45. Barnea G, Grumet M, Sap J, Margolis RU, Schlessinger J . Close similarity between receptor-linked tyrosine phosphatase and rat brain proteoglycan. Cell 1994; 76: 205.

    Article  CAS  PubMed  Google Scholar 

  46. Maurel P, Rauch U, Flad M, Margolis RK, Margolis RU . Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc Natl Acad Sci USA 1994; 91: 2512–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakurai T, Friedlander DR, Grumet M . Expression of polypeptide variants of receptor-type protein tyrosine phosphatase beta: the secreted form, phosphacan, increases dramatically during embryonic development and modulates glial cell behavior in vitro. J Neurosci Res 1996; 43: 694–706.

    Article  CAS  PubMed  Google Scholar 

  48. Nishiwaki T, Maeda N, Noda M . Characterization and developmental regulation of proteoglycan-type protein tyrosine phosphatase zeta/RPTPbeta isoforms. J Biochem (Tokyo) 1998; 123: 458–467.

    Article  CAS  Google Scholar 

  49. Garwood J, Heck N, Reichardt F, Faissner A . Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-beta, interacts with neuronal receptors and promotes neurite outgrowth. J Biol Chem 2003; 278: 24164–24173.

    Article  CAS  PubMed  Google Scholar 

  50. Heck N, Klausmeyer A, Faissner A, Garwood J . Cortical neurons express PSI, a novel isoform of phosphacan/RPTPbeta. Cell Tissue Res 2005; 321: 323–333.

    Article  CAS  PubMed  Google Scholar 

  51. Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S et al. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 1995; 82: 251–260.

    Article  CAS  PubMed  Google Scholar 

  52. Milev P, Friedlander DR, Sakurai T, Karthikeyan L, Flad M, Margolis RK et al. Interactions of the chondroitin sulfate proteoglycan phosphacan, the extracellular domain of a receptor-type protein tyrosine phosphatase, with neurons, glia, and neural cell adhesion molecules. J Cell Biol 1994; 127: 1703–1715.

    Article  CAS  PubMed  Google Scholar 

  53. Milev P, Meyer-Puttlitz B, Margolis RK, Margolis RU . Complex-type asparagine-linked oligosaccharides on phosphacan and protein-tyrosine phosphatase-zeta/beta mediate their binding to neural cell adhesion molecules and tenascin. J Biol Chem 1995; 270: 24650–24653.

    Article  CAS  PubMed  Google Scholar 

  54. Milev P, Maurel P, Haring M, Margolis RK, Margolis RU . TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-zeta/beta, and N-CAM. J Biol Chem 1996; 271: 15716–15723.

    Article  CAS  PubMed  Google Scholar 

  55. Sakurai T, Lustig M, Nativ M, Hemperly JJ, Schlessinger J, Peles E et al. Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J Cell Biol 1997; 136: 907–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Revest JM, Faivre-Sarrailh C, Maeda N, Noda M, Schachner M, Rougon G . The interaction between F3 immunoglobulin domains and protein tyrosine phosphatases zeta/beta triggers bidirectional signalling between neurons and glial cells. Eur J Neurosci 1999; 11: 1134–1147.

    Article  CAS  PubMed  Google Scholar 

  57. Canoll PD, Barnea G, Levy JB, Sap J, Ehrlich M, Silvennoinen O et al. The expression of a novel receptor-type tyrosine phosphatase suggests a role in morphogenesis and plasticity of the nervous system. Brain Res Dev Brain Res 1993; 75: 293–298.

    Article  CAS  PubMed  Google Scholar 

  58. Engel M, Maurel P, Margolis RU, Margolis RK . Chondroitin sulfate proteoglycans in the developing central nervous system. I. Cellular sites of synthesis of neurocan and phosphacan. J Comp Neurol 1996; 366: 34–43.

    Article  CAS  PubMed  Google Scholar 

  59. Snyder SE, Li J, Schauwecker PE, McNeill TH, Salton SR . Comparison of RPTP zeta/beta, phosphacan, and trkB mRNA expression in the developing and adult rat nervous system and induction of RPTP zeta/beta and phosphacan mRNA following brain injury. Brain Res Mol Brain Res 1996; 40: 79–96.

    Article  CAS  PubMed  Google Scholar 

  60. Maeda N, Hamanaka H, Oohira A, Noda M . Purification, characterization and developmental expression of a brain-specific chondroitin sulfate proteoglycan, 6B4 proteoglycan/phosphacan. Neuroscience 1995; 67: 23–35.

    Article  CAS  PubMed  Google Scholar 

  61. Li J, Tullai JW, Yu WH, Salton SR . Regulated expression during development and following sciatic nerve injury of mRNAs encoding the receptor tyrosine phosphatase HPTPzeta/RPTPbeta. Brain Res Mol Brain Res 1998; 60: 77–88.

    Article  CAS  PubMed  Google Scholar 

  62. Ohyama K, Kawano H, Asou H, Fukuda T, Oohira A, Uyemura K et al. Coordinate expression of L1 and 6B4 proteoglycan/phosphacan is correlated with the migration of mesencephalic dopaminergic neurons in mice. Brain Res Dev Brain Res 1998; 107: 219–226.

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi N, Miyata S, Yamada M, Kamei K, Oohira A . Neuronal expression of the chondroitin sulfate proteoglycans receptor-type protein-tyrosine phosphatase beta and phosphacan. Neuroscience 2005; 131: 331–348.

    Article  CAS  PubMed  Google Scholar 

  64. Levy JB, Canoll PD, Silvennoinen O, Barnea G, Morse B, Honegger AM et al. The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. J Biol Chem 1993; 268: 10573–10581.

    CAS  PubMed  Google Scholar 

  65. Sim FJ, Lang JK, Waldau B, Roy NS, Schwartz TE, Pilcher WH et al. Complementary patterns of gene expression by human oligodendrocyte progenitors and their environment predict determinants of progenitor maintenance and differentiation. Ann Neurol 2006; 59: 763–779.

    Article  CAS  PubMed  Google Scholar 

  66. Harroch S, Furtado GC, Brueck W, Rosenbluth J, Lafaille J, Chao M et al. A critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinating lesions. Nat Genet 2002; 32: 411–414.

    Article  CAS  PubMed  Google Scholar 

  67. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697, 643.

    Article  CAS  PubMed  Google Scholar 

  68. Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 2003; 8: 811–820.

    Article  CAS  PubMed  Google Scholar 

  69. Sugai T, Kawamura M, Iritani S, Araki K, Makifuchi T, Imai C et al. Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann NY Acad Sci 2004; 1025: 84–91.

    Article  CAS  PubMed  Google Scholar 

  70. Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama Y, Yoshikawa T et al. A family-based and case-control association study of SOX10 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 477–481.

    Article  CAS  Google Scholar 

  71. Aberg K, Saetre P, Jareborg N, Jazin E . Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci USA 2006; 103: 7482–7487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aberg K, Saetre P, Lindholm E, Ekholm B, Pettersson U, Adolfsson R et al. Human QKI, a new candidate gene for schizophrenia involved in myelination. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 84–90.

    Article  CAS  Google Scholar 

  73. Georgieva L, Moskvina V, Peirce T, Norton N, Bray NJ, Jones L et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc Natl Acad Sci USA 2006; 103: 12469–12474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wan C, Yang Y, Feng G, Gu N, Liu H, Zhu S et al. Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci Lett 2005; 388: 126–131.

    Article  CAS  PubMed  Google Scholar 

  75. Yang YF, Qin W, Shugart YY, He G, Liu XM, Zhou J et al. Possible association of the MAG locus with schizophrenia in a Chinese Han cohort of family trios. Schizophr Res 2005; 75: 11–19.

    Article  CAS  PubMed  Google Scholar 

  76. Hof PR, Haroutunian V, Friedrich Jr VL, Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  77. Byne W, Kidkardnee S, Tatusov A, Yiannoulos G, Buchsbaum MS, Haroutunian V . Schizophrenia-associated reduction of neuronal and oligodendrocyte numbers in the anterior principal thalamic nucleus. Schizophr Res 2006; 85: 245–253.

    Article  PubMed  Google Scholar 

  78. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  PubMed  Google Scholar 

  79. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004; 67: 269–275.

    Article  PubMed  Google Scholar 

  80. Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 2007; 41: 15–30.

    Article  PubMed  Google Scholar 

  81. Buchsbaum MS, Friedman J, Buchsbaum BR, Chu KW, Hazlett EA, Newmark R et al. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2006; 60: 1181–1187.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by an NIMH Silvio O Conte Centre For The Neuroscience of Mental Disorders Grant (MH063392 to JDB and KLD, PI and co-PI) and in part by grants from the MRC, UK (MRC and MO). VM is funded by a RCUK Fellowship and TS is a Fellow of the Seaver Foundation and is further supported by the Stanley Medical Research Institute (grant 06R-1427) and by a New York State Spinal Cord Injury Grant (SCIRB04-27). We thank Mihaela Gazdoiu and Kate Liberman for excellent technical assistance and Dr Andrew Chan for advice and guidance on the study of MAGI proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Buxbaum.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry web site (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buxbaum, J., Georgieva, L., Young, J. et al. Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Mol Psychiatry 13, 162–172 (2008). https://doi.org/10.1038/sj.mp.4001991

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001991

Keywords

This article is cited by

Search

Quick links