Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele

Abstract

A susceptibility locus for bipolar disorder was previously localized to chromosome 4q35 by genetic linkage analysis. We have applied a positional cloning strategy, combined with association analysis and provide evidence that a cadherin gene, FAT, confers susceptibility to bipolar disorder in four independent cohorts (allelic P-values range from 0.003 to 0.024). In two case–control cohorts, association was identified among bipolar cases with a family history of psychiatric illness, whereas in two cohorts of parent–proband trios, association was identified among bipolar cases who had exhibited psychosis. Pooled analysis of the case–control cohort data further supported association (P=0.0002, summary odds ratio=2.31, 95% CI: 1.49–3.59). We localized the bipolar-associated region of the FAT gene to an interval that encodes an intracellular EVH1 domain, a domain that interacts with Ena/VASP proteins, as well as putative β-catenin binding sites. Expression of Fat, Catnb (β-catenin), and the three genes (Enah, Evl and Vasp) encoding the Ena/VASP proteins, were investigated in mice following administration of the mood-stabilizing drugs, lithium and valproate. Fat was shown to be significantly downregulated (P=0.027), and Catnb and Enah were significantly upregulated (P=0.0003 and 0.005, respectively), in response to therapeutic doses of lithium. Using a protein interaction map, the expression of genes encoding murine homologs of the FAT (ft)-interacting proteins was investigated. Of 14 interacting molecules that showed expression following microarray analysis (including several members of the Wnt signaling pathway), eight showed significantly altered expression in response to therapeutic doses of lithium (binomial P=0.004). Together, these data provide convergent evidence that FAT and its protein partners may be components of a molecular pathway involved in susceptibility to bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996; 276: 293–299.

    Article  CAS  PubMed  Google Scholar 

  2. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A . The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497–502.

    Article  PubMed  Google Scholar 

  3. Mortensen PB, Pedersen CB, Melbye M, Mors O, Ewald H . Individual and familial risk factors for bipolar affective disorders in Denmark. Arch Gen Psychiatry 2003; 60: 1209–1215.

    Article  PubMed  Google Scholar 

  4. Craddock N, Jones I . Molecular genetics of bipolar disorder. Br J Psychiatry 2001; 178: S128–S133.

    Article  CAS  PubMed  Google Scholar 

  5. Mathews CA, Reus VI . Genetic linkage in bipolar disorder. CNS Spectr 2003; 8: 891–904.

    Article  PubMed  Google Scholar 

  6. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  8. Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 2003; 72: 1131–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, Potash JB et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol Psychiatry 2004; 9: 87–92.

    Article  CAS  PubMed  Google Scholar 

  10. Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9: 203–207.

    Article  CAS  PubMed  Google Scholar 

  11. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  12. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  13. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10: 657–668.

    Article  CAS  PubMed  Google Scholar 

  15. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL . The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71: 651–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry 2002; 7: 579–593.

    Article  CAS  PubMed  Google Scholar 

  17. Nakata K, Ujike H, Sakai A, Uchida N, Nomura A, Imamura T et al. Association study of the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder. Neurosci Lett 2003; 337: 17–20.

    Article  CAS  PubMed  Google Scholar 

  18. Kunugi H, Iijima Y, Tatsumi M, Yoshida M, Hashimoto R, Kato T et al. No association between the Val66Met polymorphism of the brain-derived neurotrophic factor gene and bipolar disorder in a Japanese population: a multicenter study. Biol Psychiatry 2004; 56: 376–378.

    Article  CAS  PubMed  Google Scholar 

  19. Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M, Kapelski P et al. Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry 2004; 5: 215–220.

    Article  PubMed  Google Scholar 

  20. Oswald P, Del-Favero J, Massat I, Souery D, Claes S, Van Broeckhoven C et al. Non-replication of the brain-derived neurotrophic factor (BDNF) association in bipolar affective disorder: a Belgian patient–control study. Am J Med Genet 2004; 129B: 34–35.

    Article  PubMed  Google Scholar 

  21. Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 2003; 35: 171–175.

    Article  CAS  PubMed  Google Scholar 

  22. Cichon S, Buervenich S, Kirov G, Akula N, Dimitrova A, Green E et al. Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet 2004; 36: 783–784.

    Article  CAS  PubMed  Google Scholar 

  23. Hou SJ, Yen FC, Cheng CY, Tsai SJ, Hong CJ . X-box binding protein 1 (XBP1) C−116G polymorphisms in bipolar disorders and age of onset. Neurosci Lett 2004; 367: 232–234.

    Article  CAS  PubMed  Google Scholar 

  24. Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV et al. Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 2003; 8: 241–245.

    Article  CAS  PubMed  Google Scholar 

  25. Adams LJ, Mitchell PB, Fielder SL, Rosso A, Donald JA, Schofield PR . A susceptibility locus for bipolar affective disorder on chromosome 4q35. Am J Hum Genet 1998; 62: 1084–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Badenhop RF, Moses MJ, Scimone A, Adams LJ, Kwok JB, Jones AM et al. Genetic refinement and physical mapping of a 2.3 Mb probable disease region associated with a bipolar affective disorder susceptibility locus on chromosome 4q35. Am J Med Genet 2003; 117: 23–32.

    Article  Google Scholar 

  27. Willour VL, Zandi PP, Huo Y, Diggs TL, Chellis JL, MacKinnon DF et al. Genome scan of the fifty-six bipolar pedigrees from the NIMH genetics initiative replication sample: chromosomes 4, 7, 9, 18, 19, 20, and 21. Am J Med Genet 2003; 121: 21–27.

    Article  Google Scholar 

  28. McInnis MG, Lan TH, Willour VL, McMahon FJ, Simpson SG, Addington AM et al. Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol Psychiatry 2003; 8: 288–298.

    Article  CAS  PubMed  Google Scholar 

  29. Friddle C, Koaskela R, Ranade K, Hebert J, Cargill M, Clark CD et al. Full-genome scan for linkage in 50 families segregating the bipolar affective disease phenotype. Am J Hum Genet 2000; 66: 205–215.

    Article  CAS  PubMed  Google Scholar 

  30. Bennett P, Segurado R, Jones I, Bort S, McCandless F, Lambert D et al. The Wellcome trust UK–Irish bipolar affective disorder sibling-pair genome screen: first stage report. Mol Psychiatry 2002; 7: 189–200.

    Article  CAS  PubMed  Google Scholar 

  31. Blair IP, Adams LJ, Badenhop RF, Moses MJ, Scimone A, Morris JA et al. A transcript map encompassing a susceptibility locus for bipolar affective disorder on chromosome 4q35. Mol Psychiatry 2002; 7: 867–873.

    Article  CAS  PubMed  Google Scholar 

  32. Leckman JF, Sholomskas D, Thompson WD, Belanger A, Weissman MM . Best estimate of lifetime psychiatric diagnosis: a methodological study. Arch Gen Psychiatry 1982; 39: 879–883.

    Article  CAS  PubMed  Google Scholar 

  33. Wing JK, Babor T, Brugha T, Burke J, Cooper JE, Giel R et al. SCAN. Schedules for Clinical Assessment in Neuropsychiatry. Arch Gen Psychiatry 1990; 47: 589–593.

    Article  CAS  PubMed  Google Scholar 

  34. McGuffin P, Farmer A, Harvey I . A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch Gen Psychiatry 1991; 48: 764–770.

    Article  CAS  PubMed  Google Scholar 

  35. Craddock N, Jones I, Kirov G, Jones L . The Bipolar Affective Disorder Dimension Scale (BADDS) – a dimensional scale for rating lifetime psychopathology in bipolar spectrum disorders. BMC Psychiatry 2004; 4: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Myakishev MV, Khripin Y, Hu S, Hamer DH . High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 2001; 11: 163–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  39. Blair IP, Badenhop RF, Scimone A, Moses MJ, Kerr NP, Donald JA et al. Association analysis of transcripts from the bipolar susceptibility locus on chromosome 4q35, exclusion of a pathogenic role for eight positional candidate genes. Am J Med Genet 2005; 134B: 56–59.

    Article  PubMed  Google Scholar 

  40. Blair IP, Badenhop RF, Scimone A, Moses MJ, Donald JA, Mitchell PB et al. Identification, characterization, and association analysis of novel genes from the bipolar disorder susceptibility locus on chromosome 4q35. Psychiatr Genet 2005; 15: 199–204.

    Article  PubMed  Google Scholar 

  41. Mitchell PB . Therapeutic drug monitoring of psychotropic medications. Br J Clin Pharmacol 2001; 52: 45S–54S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang J-F, Bown C, Young LT . Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GPR78. Mol Pharmacol 1999; 55: 521–527.

    Article  CAS  PubMed  Google Scholar 

  43. Wang JF, Bown CD, Chen B, Young LT . Identification of mood stabilizer-regulated genes by differential-display PCR. Int J Neuropsychopharmacol 2001; 4: 65–74.

    Article  CAS  PubMed  Google Scholar 

  44. Chetcuti A, Adams L, Mitchell PB, Schofield P . Altered gene expression in mice treated with the mood stabilizer sodium valporate. Int J Neuropsychopharmacol (in press).

  45. Moeller MJ, Soofi A, Braun GS, Li X, Watzl C, Kriz W et al. Protocadherin. FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J 2004; 23: 3769–3779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanoue T, Takeichi M . Mammalian Fat1 cadherin regulates actin dynamics and cell–cell contact. J Cell Biol 2004; 165: 517–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Renfranz PJ, Beckerle MC . Doing (F/L)pppps: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr Opin Cell Biol 2002; 14: 88–103.

    Article  CAS  PubMed  Google Scholar 

  48. Dunne J, Hanby AM, Poulsom R, Jones TA, Sheer D, Chin WG et al. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34–q35 and encodes a putative adhesion molecule. Genomics 1995; 30: 207–223.

    Article  CAS  PubMed  Google Scholar 

  49. Cox B, Hadjantonakis A-K, Collins JE, Magee AI . Cloning and expression throughout mouse development of mfat1, a homologue of the Drosophila tumour suppressor gene fat. Dev Dyn 2000; 217: 233–240.

    Article  CAS  PubMed  Google Scholar 

  50. The FlyBase Consortium. The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res 2003; 31: 172–175.

  51. Comings DE, MacMurray JP . Molecular heterosis: a review. Mol Genet Metab 2000; 71: 19–31.

    Article  CAS  PubMed  Google Scholar 

  52. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders – cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Curtis D, Kalsi G, Brynjolfsson J, McInnis M, O'Neill J, Smyth C et al. Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23–q24, and suggests the presence of additional loci on 1p and 1q. Psychiatr Genet 2003; 13: 77–84.

    PubMed  Google Scholar 

  54. Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK et al. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004; 9: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell PB, Malhi GS, Ball J . The management of bipolar disorder. In: Joyce PR, Mitchell PB (eds). Mood Disorders: Recognition and Treatment. UNSW Press: Sydney, 2004, pp 174–187.

    Google Scholar 

  56. Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999; 72: 879–882.

    Article  CAS  PubMed  Google Scholar 

  57. Yuan P, Chen G, Manji HK . Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo. J Neurochem 1999; 73: 2299–2309.

    Article  CAS  PubMed  Google Scholar 

  58. Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK . Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 2004; 9: 734–755.

    Article  CAS  PubMed  Google Scholar 

  59. Gould TD, Chen G, Manji HK . In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacolgy 2004; 29: 32–38.

    Article  CAS  Google Scholar 

  60. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stambolic V, Ruel L, Woodgett JR . Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–1668.

    Article  CAS  PubMed  Google Scholar 

  62. Gould TD, Zarate CA, Manji HK . Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry 2004; 65: 10–21.

    Article  CAS  PubMed  Google Scholar 

  63. Anderton BH, Dayanandan R, Killick R, Lovestone S . Does dysregulation of the Notch and wingless/Wnt pathways underlie the pathogenesis of Alzheimer's disease? Mol Med Today 2000; 6: 54–59.

    Article  CAS  PubMed  Google Scholar 

  64. Nelson WJ, Nusse R . Convergence of Wnt, β-catenin, and cadherin pathways. Science 2004; 303: 1483–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lenox RH, Wang LE . Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry 2003; 8: 135–144.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients and family members who participated in this study. Tissues were received from the Rebecca L Cooper Research Laboratories at the Mental Health Research Institute of Victoria, and the NSW Tissue Resource Centre, which is supported by The University of Sydney, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health. IPB was supported by a National Health and Medical Research Council (Australia) (NHMRC) postdoctoral fellowship and a NARSAD Young Investigator Award. PRS was supported by an NHMRC Senior Principal Research Fellowship. This study was supported by NHMRC project grant 230802 and NHMRC program grant 2223708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P R Schofield.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, I., Chetcuti, A., Badenhop, R. et al. Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele. Mol Psychiatry 11, 372–383 (2006). https://doi.org/10.1038/sj.mp.4001784

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001784

Keywords

This article is cited by

Search

Quick links