Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia

Abstract

The DYX2 locus on chromosome 6p22.2 is the most replicated region of linkage to developmental dyslexia (DD). Two candidate genes within this region have recently been implicated in the disorder: KIAA0319 and DCDC2. Variants within DCDC2 have shown association with DD in a US and a German sample. However, when we genotyped these specific variants in two large, independent UK samples, we obtained only weak, inconsistent evidence for their involvement in DD. Having previously found evidence that variation in the KIAA0319 gene confers susceptibility to DD, we sought to refine this genetic association by genotyping 36 additional SNPs in the gene. Nine SNPs, predominantly clustered around the first exon, showed the most significant association with DD in one or both UK samples, including rs3212236 in the 5′ flanking region (P=0.00003) and rs761100 in intron 1 (P=0.0004). We have thus refined the region of association with developmental dyslexia to putative regulatory sequences around the first exon of the KIAA0319 gene, supporting the presence of functional mutations that could affect gene expression. Our data also suggests a possible interaction between KIAA0319 and DCDC2, which requires further testing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Williams J, O'Donovan MC . The genetics of developmental dyslexia. Eur J Hum Genet 2006; 14: 681–689.

    Article  CAS  PubMed  Google Scholar 

  2. Fisher JH . Case of congenital word blindness (inability to learn to read). Ophthal Rev 1905; 24: 315.

    Google Scholar 

  3. Hinshelwood J . Four cases of hereditary word-blindness occurring in the same family. Br Med J 1907; 2: 1229–1232.

    Google Scholar 

  4. DeFries JC, Fulker DW, LaBuda MC . Evidence for a genetic aetiology in reading disability of twins. Nature 1987; 329: 537–539.

    Article  CAS  PubMed  Google Scholar 

  5. Stevenson J, Graham P, Fredman G, McLoughlin V . A twin study of genetic influences on reading and spelling ability and disability. J Child Psychol Psychiatry 1987; 28: 229–247.

    Article  CAS  PubMed  Google Scholar 

  6. DeFries JC, Olson R, Pennington BF, Smith SD . Colorado reading project: past, present, and future. Learn Disabil 1991; 2: 37–46.

    Google Scholar 

  7. Pennington BF, Gilger JW, Pauls D, Smith SA, Smith SD, DeFries JC . Evidence for major gene transmission of developmental dyslexia. JAMA 1991; 266: 1527–1534.

    Article  CAS  PubMed  Google Scholar 

  8. Schulte-Korne G, Deimel W, Muller K, Gutenbrunner C, Remschmidt H . Familial aggregation of spelling disability. J Child Psychol Psychiatry 1996; 37: 817–822.

    Article  CAS  PubMed  Google Scholar 

  9. Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC . Quantitative trait locus for reading disability on chromosome 6. Science 1994; 266: 276–279.

    Article  CAS  PubMed  Google Scholar 

  10. Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC . Quantitative trait locus for reading disability: correction. Science 1995; 268: 1553.

    Article  CAS  PubMed  Google Scholar 

  11. Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC, Shuster A et al. Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am J Hum Genet 1997; 60: 27–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fisher SE, Marlow AJ, Lamb J, Maestrini E, Williams DF, Richardson AJ et al. A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am J Hum Genet 1999; 64: 146–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gayan J, Smith SD, Cherny SS, Cardon LR, Fulker DW, Brower AM et al. Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am J Hum Genet 1999; 64: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grigorenko EL, Wood FB, Meyer MS, Pauls DL . Chromosome 6p influences on different dyslexia-related cognitive processes: further confirmation. Am J Hum Genet 2000; 66: 715–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaplan DE, Gayan J, Ahn J, Won TW, Pauls D, Olson RK et al. Evidence for linkage and association with reading disability on 6p21.3–22. Am J Hum Genet 2002; 70: 1287–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grigorenko EL, Wood FB, Golovyan L, Meyer M, Romano C, Pauls D . Continuing the search for dyslexia genes on 6p. Am J Med Genet B Neuropsychiatr Genet 2003; 118: 89–98.

    Article  Google Scholar 

  17. Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS, Cardon LR et al. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 2004; 75: 1046–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cope N, Harold D, Hill G, Moskvina V, Stevenson J, Holmans P et al. Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. Am J Hum Genet 2005; 76: 581–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y et al. The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum Mol Genet 2006; 15: 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  20. Meng H, Smith SD, Hager K, Held M, Liu J, Olson RK et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci USA 2005; 102: 17053–17058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schumacher J, Anthoni H, Dahdouh F, Konig IR, Hillmer AM, Kluck N et al. Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. Am J Hum Genet 2006; 78: 52–62.

    Article  CAS  PubMed  Google Scholar 

  22. Marlow AJ, Fisher SE, Richardson AJ, Francks C, Talcott JB, Monaco AP et al. Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK. Behav Genet 2001; 31: 219–230.

    Article  CAS  PubMed  Google Scholar 

  23. Fisher SE, Francks C, Marlow AJ, MacPhie IL, Newbury DF, Cardon LR et al. Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nat Genet 2002; 30: 86–91.

    Article  CAS  PubMed  Google Scholar 

  24. Marlow AJ, Fisher SE, Francks C, MacPhie IL, Cherny SS, Richardson AJ et al. Use of multivariate linkage analysis for dissection of a complex cognitive trait. Am J Hum Genet 2003; 72: 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deffenbacher KE, Kenyon JB, Hoover DM, Olson RK, Pennington BF, DeFries JC et al. Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Hum Genet 2004; 115: 128–138.

    Article  CAS  PubMed  Google Scholar 

  26. Neale MD . Analysis of Reading Ability, revised british edition (British adaptation and standardisation by Una Christophers and Chris Whetton). NFER-Nelson: Windsor, United Kingdom, 1989.

  27. Elliot CD . British Ability Scales. NFER-Nelson: Windsor, United Kingdom, 1993.

    Google Scholar 

  28. Harold D, Peirce T, Moskvina V, Myers A, Jones S, Hollingworth P et al. Sequence variation in the CHAT locus shows no association with late-onset Alzheimer's disease. Hum Genet 2003; 113: 258–267.

    Article  CAS  PubMed  Google Scholar 

  29. Margulies EH, Green ED . Detecting highly conserved regions of the human genome by multispecies sequence comparisons. Cold Spring Harb Symp Quant Biol 2003; 68: 255–263.

    Article  CAS  PubMed  Google Scholar 

  30. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  PubMed  Google Scholar 

  31. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  32. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  33. Fisher RA . Statistical Methods for Research Workers. Oliver and Boyd: Edinburgh, 1932.

    Google Scholar 

  34. Macgregor S, Khan IA . GAIA: an easy-to-use web-based application for interaction analysis of case-control data. BMC Med Genet 2006; 7: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pettersson F, Jonsson O, Cardon LR . GOLDsurfer: three dimensional display of linkage disequilibrium. Bioinformatics 2004; 20: 3241–3243.

    Article  CAS  PubMed  Google Scholar 

  36. Galaburda AM, Kemper TL . Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol 1979; 6: 94–100.

    Article  CAS  PubMed  Google Scholar 

  37. Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N . Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 1985; 18: 222–233.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the parents and children who took part in this study. We also thank Fredrik Pettersson for helping with GoldSurfer. This work was supported by a Wellcome Trust Principal Research Fellowship to APM, grants to JWilliams, MOD and MO from the Health Foundation and the Medical Research Council, and funding to MD in part by the Intramural Research Program of the National Human Genome Research Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Williams.

Additional information

Electronic Database Information

The URLs for data presented herein are as follows:

Amplifluor AssayArchitect, https://apps.serologicals.com/AAA/

dbSNP Home Page, http://www.ncbi.nlm.nih.gov/SNP/

Genetic Association Interaction Analysis, http://www.bbu.cf.ac.uk/html/research/biostats.htm

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim/

Multi-species conserved sequences (MCSs), http://hgwdev-elliott.cse.ucsc.edu/cgi-bin/hgGateway and http://genome.lbl.gov/vista/index.shtml.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harold, D., Paracchini, S., Scerri, T. et al. Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Mol Psychiatry 11, 1085–1091 (2006). https://doi.org/10.1038/sj.mp.4001904

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001904

Keywords

This article is cited by

Search

Quick links