Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Article
  • Published:

Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine

Abstract

Recent studies have provided evidence that structural remodeling of certain brain regions is a feature of depressive illness, and the postulated underlying mechanisms contribute to the idea that there is more to antidepressant actions that can be explained exclusively by a monoaminergic hypothesis. This review summarizes recent neurobiological studies on the antidepressant, tianeptine (S-1574, [3-chloro-6-methyl-5,5-dioxo-6,11-dihydro-(c,f)-dibenzo-(1,2-thiazepine)-11-yl) amino]-7 heptanoic acid, sodium salt), a compound with structural similarities to the tricyclic antidepressant agents, the efficacy and good tolerance of which have been clearly established. These studies have revealed that the neurobiological properties of tianeptine involve the dynamic interplay between numerous neurotransmitter systems, as well as a critical role of structural and functional plasticity in the brain regions that permit the full expression of emotional learning. Although the story is far from complete, the schema underlying the effect of tianeptine on central plasticity is the most thoroughly studied of any antidepressants. Effects of tianeptine on neuronal excitability, neuroprotection, anxiety, and memory have also been found. Together with clinical data on the efficacy of tianeptine as an antidepressant, these actions offer insights into how compounds like tianeptine may be useful in the treatment of neurobiological features of depressive disorders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Kline NS, Shah BK . Comparable therapeutic efficacy of tryptophan and imipramine: average therapeutic ratings versus ‘true’ equivalence. An important difference. Curr Ther Res Clin Exp 1973; 15: 484–487.

    CAS  PubMed  Google Scholar 

  2. Coppen AJ, Doogan DP . Serotonin and its place in the pathogenesis of depression. J Clin Psychiatry 1988; 49: 4–11.

    PubMed  Google Scholar 

  3. Duman RS, Heninger GR, Nestler EJ . A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54: 597–606.

    Article  CAS  PubMed  Google Scholar 

  4. Duman RS . Synaptic plasticity and mood disorders. Mol Psychiatry 2002; 7: S29–S34.

    Article  CAS  PubMed  Google Scholar 

  5. Sheline YI . Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54: 338–352.

    Article  PubMed  Google Scholar 

  6. Manji KH, Quiroz JA, Sporn J, Payne-Jennifer L, Denicoff K, A-Gray N et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–742.

    Article  CAS  PubMed  Google Scholar 

  7. Sheline Y, Wang P, Gado M, Csernansky J, Vannier M . Hippocampal atrophy in major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheline YI, Sanghavi M, Mintun MA, Gado MH . Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19: 5034–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duman RS, Charney DS . Cell atrophy and loss in major depression. Biol Psychiatry 1999; 45: 1083–1084.

    Article  CAS  PubMed  Google Scholar 

  10. Frodl T, Meisenzahl E, Zetzsche T, Bottlender R, Born C, Groll C et al. Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 2002a; 51: 708–714.

    Article  PubMed  Google Scholar 

  11. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M et al. Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 2002b; 159: 1112–1118.

    Article  PubMed  Google Scholar 

  12. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT et al. Course of illness, hippocampal function and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003; 100: 1387–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beyer JL, Krishnan KR . Volumetric brain imaging findings in mood disorders. Bipolar Disord 2002; 4: 89–104.

    Article  PubMed  Google Scholar 

  14. Drevets WC . Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 2000; 126: 413–431.

    Article  CAS  PubMed  Google Scholar 

  15. Strakowski SM, DelBello MP, Zimmerman ME, Getz GE, Mills NP, Ret J et al. Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. Am J Psychiatry 2002; 159: 1841–1847.

    Article  PubMed  Google Scholar 

  16. Ongür D, Drevets WC, Price JL . Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 1998; 95: 13290–13295.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085–1098.

    Article  CAS  PubMed  Google Scholar 

  18. Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 2002; 51: 273–279.

    Article  PubMed  Google Scholar 

  19. Sheline YI, Gado MH, Price JL . Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 1998; 9: 2023–2028.

    Article  CAS  PubMed  Google Scholar 

  20. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Jager M, Groll C et al. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol Psychiatry 2003; 53: 338–344.

    Article  PubMed  Google Scholar 

  21. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  22. Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M et al. Stress-induced change in cerebral metabolites, hippoccampal volume and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 2001; 98: 12796–12801.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van der Hart MGC, Czéh B, de Biurrun G, Michaelis T, Watanabe T, Natt O et al. Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol Psychiatry 2002; 7: 933–941.

    Article  CAS  PubMed  Google Scholar 

  24. Kato G, Weitsch AF . Neurochemical profile of tianeptine, a new antidepressant drug. Clin Neuropharmcol 1988; 11: S43–S50.

    CAS  Google Scholar 

  25. Rogó Z, Skuza G, Dlaboga D, Maj J, Dziedzicka-Wasylewska M . Effect of repeated treatment with tianeptine and fluoxetine on the central alpha(1)-adrenergic system. Neuropharmacology 2001; 41: 360–368.

    Article  Google Scholar 

  26. Menini T, Mocaër E, Garattini S . Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 1987; 336: 478–482.

    Article  Google Scholar 

  27. Fattaccini CM, Bolanos-Jiménez F, Gozlan H, Hamon M . Tianeptine stimulates uptake of 5-hydroxytryptamine in vivo in the rat brain. Neuropharmacology 1990; 29: 1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe Y, Sakai RR, McEwen BS, Mandelson S . Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res 1993a; 615: 87–94.

    Article  CAS  PubMed  Google Scholar 

  29. Piñeyro G, Deveault L, Blier P, Dennis T, de Montigny C . Effect of acute and prolonged tianeptine administration on the 5-HT transport: electrophysiological, biochemical and radioligand binding studies in the rat brain. Naunyn-Schmiedberg's Arch Pharmacol 1995; 351: 111–118.

    Article  Google Scholar 

  30. Kelly JP, Leonard BE . The effect of tianeptine and sertraline in three animal models of depression. Neuropharmacology 1994; 33: 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  31. Lacroix P, Rocher N, Deslandes A . Antidepressant effects of tianeptine, of its two enantiomers and its predominant metabolite in the learned helplessness test in rats. Eur Neuropsychopharmacol 1996; 6: S4–S70, P.1.029.

    Article  Google Scholar 

  32. Costa e Silva JA, Ruschel SI, Caetano D, Rocha FL, da Silva Lippi JR, Arruda S et al. Placebo-controlled study of tianeptine in major depressive episodes. Neuropsychobiology 1997; 35: 24–29.

    Article  CAS  PubMed  Google Scholar 

  33. Waintraub L, Septien L, Azoulay P . Efficacy and safety of tianeptine in major depression: evidence from a 3-month controlled clinical trial versus paroxetine. CNS Drugs 2002; 16: 65–75.

    Article  CAS  PubMed  Google Scholar 

  34. Lepine JP, Altamura C, Ansseau M, Gutierrez JL, Bitter I, Lader M, Waintraub L . Tianeptine and paroxetine in major depressive disorder, with a special focus on the anxious component in depression: an international, 6-week double-blind study dagger. Hum Psychopharmacol 2001; 16: 219–227.

    Article  CAS  PubMed  Google Scholar 

  35. Cassano GB, Heinze G, Lôo H, Mendlewicz J, Paes de Sousa M . A double-blind comparison of tianeptine, imipramine and placebo in the treatment of major depressive episodes. Eur Psychiatry 1996; 11: 254–259.

    Article  CAS  PubMed  Google Scholar 

  36. Lôo H, Saiz-Ruiz J, Costa E Silva JA, Ansseau M, Herrington R, Vaz-Serra A et al. Efficacy and safety of tianeptine in the treatment of depressive disorders in comparison with fluoxetine. J Affect Disord 1999; 56: 109–118.

    Article  PubMed  Google Scholar 

  37. Nickel T, Sonntag A, Schill J, Zobel AW, Ackl N, Brunnauer A et al. Clinical and neurobiological effects of tianeptine and paroxetine in major depression. J Clin Psychopharmacol 2003; 23: 155–168.

    Article  CAS  PubMed  Google Scholar 

  38. Novotny V, Faltus F . Tianeptine and fluoxetine in major depression: a 6-week randomised double-blind study. Hum Psychopharmacol 2002; 17: 299–303.

    Article  CAS  PubMed  Google Scholar 

  39. Szadoczky E, Furedi J . Efficacy and acceptability of tianeptine and sertraline in the acute treatment phase of depression. Encephale 2002; 28: 343–349.

    CAS  PubMed  Google Scholar 

  40. Kasper S, Olié JP . A meta-analysis of tianeptine versus SSRIs in depression. Eur Psychiatry 2002; 17: 331–340.

    Article  PubMed  Google Scholar 

  41. Invernizzi G, Aguglia E, Bertolino A, Casacchia M, Ciani N, Marchesi GF et al. The efficacy and safety of tianeptine in the treatment of depressive disorder: results of a controlled double blind multicentre study vs amitriptyline. Neuropsychobiology 1994; 30: 85–93.

    Article  CAS  PubMed  Google Scholar 

  42. Lôo H, Malka R, Defrance R, Barrucand D, Benard JY, Niox-Rivière H et al. The tianeptine and amitryptiline: controlled double blind trial in depressed alcoholic patients. Neuropsychobiology 1988; 19: 79–85.

    Article  PubMed  Google Scholar 

  43. Guelfi JD, Pichot P, Dreyfus JE . Efficacy of tianeptine in anxious depressed patients: results of a controlled multicenter trial versus amitriptyline. Neuropsychobiology 1989; 22: 41–48.

    Article  CAS  PubMed  Google Scholar 

  44. Brion S, Audrain S, de Bodinat C . Episodes of severe depression in subjects over 70 years of age. Efficacy and acceptability of tianeptine and mianserin. Presse Med 1996; 25: 461–468.

    CAS  PubMed  Google Scholar 

  45. Ansseau M, Bataille M, Briole G, de Nayer A, Fauchère PA, Ferrero F et al. Controlled comparison of tianeptine, alprazolam and mianserin in the treatment of adjustment disorders with anxiety and depression. Hum Psychopharmacol 1996; 4: 293–298.

    Article  Google Scholar 

  46. Alby JM, Ferreri M, Cabanne J, de Bodinat C, Dagens V . Efficacy of tianeptine (Stablon) for the treatment of major depression and dysthymia with somatic complaint. A comparative study versus fluoxetine (Prozac). Ann Psychiatr 1993; 8: 136–144.

    Google Scholar 

  47. Ridout F, Hindmarch I . Effect of tianeptine and mianserin on car driving skills. Psychopharmacology 2001; 154: 356–361.

    Article  CAS  PubMed  Google Scholar 

  48. Novotny V, Faltus F . First signs of improvement with tianeptine in the treatment of depression: an analysis of a double-blind study versus fluoxetine. Eur Neuropsychopharmacol 2003; 13: 230.

    Article  Google Scholar 

  49. McEwen BS . Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22: 105–122.

    Article  CAS  PubMed  Google Scholar 

  50. Sapolsky RM . Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000; 57: 925–935.

    Article  CAS  PubMed  Google Scholar 

  51. Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS . Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 1992; 222: 157–162.

    Article  CAS  PubMed  Google Scholar 

  52. Magariños AM, Deslandes A, McEwen BS . Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 1999; 371: 113–122.

    Article  PubMed  Google Scholar 

  53. Conrad CD, LeDoux JE, Magariños AM, McEwen BS . Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 1999; 113: 902–913.

    Article  CAS  PubMed  Google Scholar 

  54. Luo L, Tan RX . Fluoxetine inhibits dendrite atrophy of hippocampal neurons by decreasing nitric oxide synthase expression in rat depression model. Acta Pharmacol Sin 2001; 22: 865–870.

    CAS  PubMed  Google Scholar 

  55. Fuchs E, Kramer M, Hermes B, Netter P, Hiemke C . Psychosocial stress in tree shrews: clomipramine counteracts behavioral and endocrine changes. Pharmacol Biochem Behav 1996; 54: 219–228.

    Article  CAS  PubMed  Google Scholar 

  56. Van Kampen M, Schmitt U, Hiemke C, Fuchs E . Diazepam has no beneficial effects on stress-induced behavioural and endocrine changes in male tree shrews. Pharmacol Biochem Behav 2000; 65: 539–546.

    Article  CAS  PubMed  Google Scholar 

  57. Malberg JE, Duman RS . Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003; 28: 1562–1571.

    Article  CAS  PubMed  Google Scholar 

  58. D'Sa C, Duman RS . Antidepressants and neuroplasticity. Bipolar Disord 2002; 4: 183–194.

    Article  CAS  PubMed  Google Scholar 

  59. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuroda Y, McEwen BS . Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein-43 and microtubule-associated protein 2 mRNA expression in the rat hippocampus. Brain Res Mol Brain Res 1998; 59: 35–39.

    Article  CAS  PubMed  Google Scholar 

  61. Tanapat P, Gould E . EGF stimulates proliferation of granule cell precursors in the dentate gyrus of adult rats. Soc Neurosci 1997; 23: 317.

    Google Scholar 

  62. Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS . Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 2000; 20: 2896–2903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Trejo JL, Carro E, Torres-Alemán I . Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 2001; 21: 1628–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McEwen BS . Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatry 1997; 2: 255–262.

    Article  CAS  PubMed  Google Scholar 

  65. Skolnick P . Antidepressants for the new millennium. Eur J Pharmacol 1999; 375: 31–40.

    Article  CAS  PubMed  Google Scholar 

  66. Magariños AM, McEwen BS . Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 1995a; 69: 83–88.

    Article  PubMed  Google Scholar 

  67. Magariños AM, McEwen BS . Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995b; 69: 89–98.

    Article  PubMed  Google Scholar 

  68. McEwen BS, Magariños AM . Stress effects on morphology and function of the hippocampus. Ann NY Acad Sci 1997; 821: 271–284.

    Article  CAS  PubMed  Google Scholar 

  69. Reagan LP, Rosell DR, Wood GE, Spedding M, Muñoz C, Rothstein J et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA 2004; 04: 2179–2184.

    Article  CAS  Google Scholar 

  70. Lowy MT, Gault L, Yamamoto BK . Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 1993; 61: 1957–1960.

    Article  CAS  PubMed  Google Scholar 

  71. Lowy MT, Wittenberg L, Yamamoto BK . Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 1995; 65: 268–274.

    Article  CAS  PubMed  Google Scholar 

  72. McEwen BS, Magariños AM, Reagan LP . Structural plasticity and tianeptine: cellular and molecular targets. Eur Psychiatry 2002; 17: S318–S330.

    Article  Google Scholar 

  73. McEwen BS . Mood disorders and allostatic load. Biol Psychiatry 2003; 54: 200–207.

    Article  PubMed  Google Scholar 

  74. Kole MHP, Swan L, Fuchs E . The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur J Neurosci 2002; 16: 807–816.

    Article  PubMed  Google Scholar 

  75. Ishizuka N, Cowan WM, Amaral DG . A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 1995; 362: 17–45.

    Article  CAS  PubMed  Google Scholar 

  76. Hasselmo ME, McLelland JL . Neural models of memory. Curr Opin Neurobiol 1999; 9: 184–188.

    Article  CAS  PubMed  Google Scholar 

  77. Lisman JE . Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate–CA3 interactions. Neuron 1999; 22: 233–242.

    Article  CAS  PubMed  Google Scholar 

  78. Watanabe Y, Saito H, Abe K . Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction of long-term potentiation in rat hippocampal slices. Neuropharmacology 1993b; 32: 479–486.

    Article  CAS  PubMed  Google Scholar 

  79. Sernagor E, Kuhn D, Vyklicky Jr L, Mayer ML . Open channel block of NMDA receptor responses evoked by tricyclic antidepressants. Neuron 1989; 2: 1221–1227.

    Article  CAS  PubMed  Google Scholar 

  80. Audinat E, Rossier J, Spedding M, Munoz C . Tianeptine modifies hippocampal function directly in vitro. Soc Neurosci Abstr 2001; 27: 259.25.

    Google Scholar 

  81. Wu GY, Cline HT . Stabilization of dendritic arbor structure in vivo by CaMKII. Science 1998; 279: 222–226.

    Article  CAS  PubMed  Google Scholar 

  82. Svenningsson P, Tzavara E, Nomikos G, Mc Ewen BS, Greengard P . Biochemical modulation of AMPA receptor function by antidepressants. J Eur Coll Neuropsychopharmacol 2003; 13: S102.

    Article  Google Scholar 

  83. Plaisant F, Dommergues MA, Spedding M, Cecchelli R, Brillault J, Kato G et al. Neuroprotective properties of tianeptine: interactions with cytokines. Neuropharmacology 2003; 44: 801–809.

    Article  CAS  PubMed  Google Scholar 

  84. Lucassen PJ, Fuchs E, Czéh B . Antidepressant treatment with tianeptine prevents apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004; 55: 789–796.

    Article  CAS  PubMed  Google Scholar 

  85. Lucassen PJ, Vollmann-Honsdorf GK, Gleisberg M, Czéh B, De Kloet ER, Fuchs E . Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci 2001; 14: 161–166.

    Article  CAS  PubMed  Google Scholar 

  86. Manji HK, Moore GJ, Rajkowska G, Chen G . Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 2000; 5: 578–593.

    Article  CAS  PubMed  Google Scholar 

  87. Lemaire V, Koehl M, Le Moal M, Abrous DN . Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 2000; 97: 11032–11037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmitz C, Rhodes ME, Bludau M, Kaplan S, Ong P, Ueffing I et al. Depression: reduced number of granule cells in the hippocampus of female, but not male, rats due to prenatal restraint stress. Mol Psychiatry 2002; 7: 810–813.

    Article  CAS  PubMed  Google Scholar 

  89. Manji HK, Drevets WC, Charney DS . The cellular neurobiology of depression. Nat Med 2001; 7: 541–547.

    Article  CAS  PubMed  Google Scholar 

  90. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM . Neurobiology of depression. Neuron 2002; 34: 13–25.

    Article  CAS  PubMed  Google Scholar 

  91. Rajkowska G . Cell pathology in bipolar disorder. Bipolar Disord 2002; 4: 105–116.

    Article  PubMed  Google Scholar 

  92. Zihl J, Grön G, Brunnauer A . Cognitive deficits in schizophrenia and affective disorders: evidence for a final common pathway disorder. Acta Psychiatr Scand 1998; 97: 351–357.

    Article  CAS  PubMed  Google Scholar 

  93. Luine V, Villegas M, Martinez C, McEwen BS . Repeated stress causes reversible impairments of spatial memory performance. Brain Res 1994; 639: 167–170.

    Article  CAS  PubMed  Google Scholar 

  94. Conrad CD, Galea LA, Kuroda Y, McEwen BS . Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 1996; 110: 1321–1334.

    Article  CAS  PubMed  Google Scholar 

  95. Jaffard R, Mocaër E, Poignant JC, Micheau J, Marighetto A, Meunier M, Béracochéa D . Effects of tianeptine on spontaneous alternation, simple and concurrent spatial discrimination learning and on alcohol-induced alternation deficits in mice. Behav Pharmacol 1991; 2: 37–46.

    Article  PubMed  Google Scholar 

  96. Kim JJ, Diamond DM . The stressed hippocampus, synaptic plasticity and lost memories. Nat Neurosci Rev 2002; 3: 453–462.

    Article  CAS  Google Scholar 

  97. Campbell AM, Park CR, Woodson JW, Munoz C, Fleshner M, Diamond DM . Acute administration of tianeptine but not propanolol, reverses the stress-induced impairment of spatial memory in rats. Soc Neurosci 2003; 833: 3.

    Google Scholar 

  98. Park CR, Campbell AM, Fleshner M, Munoz C, Diamond DM . The antidepressant tianeptine reverses predator stress-induced memory impairment in adrenalectomized rats. Soc Neurosci 2003; 833: 1.

    Google Scholar 

  99. Delagrange P, Bouyer JJ, Montaron MF, Durand C, Mocaer E, Rougeul A . Action of tianeptine on focalization of attention in cat. Psychopharmacology 1990; 102: 227–233.

    Article  CAS  PubMed  Google Scholar 

  100. File SE, Mabbutt PS . Effects of tianeptine in animal models of anxiety and on learning and memory. Drug Dev Res 1991; 23: 47–56.

    Article  CAS  Google Scholar 

  101. Lejeune F, Poignant JC, Reure H . Etude électrophysiologique de la tianeptine, nouveau stimulant du recaptage de la sérotonine possédant une activité antidépressive. Neurophysiol Clin 1988; 18: 369–381.

    Article  CAS  PubMed  Google Scholar 

  102. Mocaër E, Rettori MC, Kamoun A . Pharmacological antidepressive effects and tianeptine induced 5-HT uptake increase. Clin Neuropharmacol 1988; 11: S32–S42.

    PubMed  Google Scholar 

  103. Morris RGM, Kelly S, Burney D, Anthony T, Boyer PA, Spedding M . Tianeptine and its enantiomers: effects on spatial memory in rats with medial septum lesions. Neuropharmacology 2001; 41: 272–281.

    Article  CAS  PubMed  Google Scholar 

  104. Amaral DG, Kurz J . An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 1985; 240: 37–59.

    Article  CAS  PubMed  Google Scholar 

  105. Chapman PF, Chattarji S . Synaptic plasticity in the amygdala. In: Aggleton JP (ed) The Amygdala: A Functional Analysis. Oxford: Oxford University Press, 2000 pp 117–153.

    Google Scholar 

  106. Pitkanen A, Savander V, LeDoux JE . Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 1997; 20: 517–523.

    Article  CAS  PubMed  Google Scholar 

  107. Vickery R, Morris SH, Bindman LJ . Metabotropic glutamate receptors are involved in long-term potentiation in isolated slices of rat medial frontal cortex. J Neurophysiol 1997; 78: 3039–3046.

    Article  CAS  PubMed  Google Scholar 

  108. Shakesby AC, Anwyl R, Rowan MJ . Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci 2002; 22: 3638–3644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Whitton PS, Sarna GS, Datla KP, Curzon G . Effects of tianeptine on stress-induced behavioral deficits and 5-HT-dependent behavior. Psychopharmacology 1991; 104: 81–85.

    Article  CAS  PubMed  Google Scholar 

  110. Rocher C, Spedding M, Muñoz C, Jay TM . Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 2004; 14: 224–229.

    Article  PubMed  Google Scholar 

  111. Radley JJ, Sisti HM, Hao J, Hof PR, McEwen BS, Morrison JH . Chronic behavioural stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Soc Neurosci 2003; 623: 8.

    Google Scholar 

  112. Petrovich GD, Canteras NS, Swanson LW . Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev 2001; 38: 247–289.

    Article  CAS  PubMed  Google Scholar 

  113. Vouimba R, Munoz C, Diamond DM . Effects of the antidepressant tianeptine and psychological stress on synaptic plasticity in the hippocampus and amygdala. Soc Neurosc 2003; 376: 6.

    Google Scholar 

  114. Chattarji S, Vyas A, Mitra R, Rao BSS . Effects of chronic unpredictable and immobilization stress on neuronal plasticity in the rat amygdala and hippocampus. Soc Neurosci Abstr 2000; 26: 1533.

    Google Scholar 

  115. Vyas A, Mitra R, Rao BSS, Chattarji S . Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002; 22: 6810–6818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pillai AG, Munoz C, Chattarji S . The antidepressant tianeptine prevents the dendritic hypertrophy in the amygdala and increase in anxiety induced by chronic stress in the rat. Program No. 7621 2004 Abstract Viewer/itinerary Planner, Society for Neuroscience, Washington, DC 2004 (online).

  117. File SE, Andrews N, al-Farhan M . Anxiogenic responses of rats on withdrawal from chronic ethanol treatment: effects of tianeptine. Alcohol Alcohol 1993; 28: 281–286.

    CAS  PubMed  Google Scholar 

  118. Zethof TJ, Van der Heyden JA, Tolboom JT, Olivier B . Stress-induced hyperthermia as a putative anxiety model. Eur J Pharmacol 1995; 294: 125–135.

    Article  CAS  PubMed  Google Scholar 

  119. Wood GE, Reagan LP, Grillo C, Piroli G, McEwen BS . Chronic antidepressant treatment with tianeptine prevents the stress-induced potentiation of aggressive conflicts. Soc Neurosci 2003; 217: 7.

    Google Scholar 

  120. Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, LeDoux JE . The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry 2004; 55: 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  121. Jack CR, Petersen RC, Xu Y, O'Brien PC, Smith GE, Ivnik RJ et al. Rates of hippocampal atrophy correlates with change in clinical status in aging and AD. Neurology 2000; 55: 484–489.

    Article  PubMed  Google Scholar 

  122. Grundman M, Sencakova D, Jack CR, Petersen RC, Kim HT, Schultz A et al. Brain MRI hippocampal volume and prediction of clinical status in mild cognitive impairment trial. J Mol Neurosci 2002; 19: 23–27.

    Article  CAS  PubMed  Google Scholar 

  123. Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S et al. Modulation of cortical–limbic pathways in major depression. Arch Gen Psychiatry 2004; 61: 34–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S McEwen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEwen, B., Olié, J. Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 10, 525–537 (2005). https://doi.org/10.1038/sj.mp.4001648

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001648

Keywords

This article is cited by

Search

Quick links