Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Inhibition of System A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action

Abstract

Clozapine is an atypical antipsychotic with particular efficacy in schizophrenia, possibly related to potentiation of brain N-methyl-D-aspartate receptor (NMDAR) -mediated neurotransmission. NMDARs are regulated in vivo by glycine, which is regulated in turn by glycine transporters. The present study investigates transport processes regulating glycine uptake into rat brain synaptosomes, along with effects of clozapine on synaptosomal glycine transport. Amino-acid uptake of amino acids was assessed in rat brain P2 synaptosomal preparations using a radiotransport assay. Synaptosomal glycine transport was inhibited by a series of amino acids and by the selective System A antagonist MeAIB (2-methyl-aminoisobutyric acid). Clozapine inhibited transport of both glycine and MeAIB, but not other amino acids, at concentrations associated with preferential clinical response (0.5–1 μg/ml). By contrast, other antipsychotics studied were ineffective. The novel glycine transport inhibitor N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS) produced biphasic inhibition of [3H]glycine transport, with IC50 values of approximately 25 nM and 25 μM, respectively. NFPS inhibition of [3H]MeAIB was monophasic with a single IC50 value of 31 μM. Clozapine significantly inhibited [3H]glycine binding even in the presence of 100 nM NFPS. In conclusion, this study suggests first that System A transporters, or a subset thereof, may play a critical role in regulation of synaptic glycine levels and by extension of NMDA receptor regulation, and second that System A antagonism may contribute to the differential clinical efficacy of clozapine compared with other typical or atypical antipsychotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kane J, Honigfeld G, Singer J, Meltzer HY . Clozaril Collaborative Study Group* Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45: 789–796.

    Article  CAS  Google Scholar 

  2. Buchanan RW, Breier A, Kirkpatrick B, Ball P, Carpenter Jr WT . Positive and negative symptom response to clozapine in schizophrenic patients with and without the deficit syndrome. Am J Psychiatry 1998; 155: 751–760.

    Article  CAS  Google Scholar 

  3. Chakos M, Lieberman J, Hoffman E, Bradford D, Sheitman B . Effectiveness of second-generation antipsychotics in patients with treatment-resistant schizophrenia: a review and meta-analysis of randomized trials. Am J Psychiatry 2001; 158: 518–526.

    Article  CAS  Google Scholar 

  4. Davis JM, Chen N, Glick ID . A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 2003; 60: 553–564.

    Article  CAS  Google Scholar 

  5. Leucht S, Wahlbeck K, Hamann J, Kissling W . New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 2003; 361: 1581–1589.

    Article  CAS  Google Scholar 

  6. Meltzer HY . The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999; 21: 106S–115S.

    Article  CAS  Google Scholar 

  7. Seeman P, Corbett R, Van Tol HH . Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology 1997; 16: 93–110, discussion 111–135..

    Article  CAS  Google Scholar 

  8. Kapur S, Seeman P . Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiatry 2001; 158: 360–369.

    Article  CAS  Google Scholar 

  9. Kaladjian A, Bery B, Deturmeny E, Bruguerolle B . Clozapine monitoring: plasma or serum levels? Ther Drug Monit 1999; 21: 327–329.

    Article  CAS  Google Scholar 

  10. Llorca PM, Lancon C, Disdier B, Farisse J, Sapin C, Auquier P . Effectiveness of clozapine in neuroleptic-resistant schizophrenia: clinical response and plasma concentrations. J Psychiatry Neurosci 2002; 27: 30–37.

    PubMed  PubMed Central  Google Scholar 

  11. Fabrazzo M, La Pia S, Monteleone P, Esposito G, Pinto A, De Simone L et al. Is the time course of clozapine response correlated to the time course of clozapine plasma levels? A one-year prospective study in drug-resistant patients with schizophrenia. Neuropsychopharmacology 2002; 27: 1050–1055.

    Article  CAS  Google Scholar 

  12. Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM . Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 1993; 9: 117–124.

    Article  CAS  Google Scholar 

  13. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  Google Scholar 

  14. Coyle JT . The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996; 3: 241–253.

    Article  CAS  Google Scholar 

  15. Moghaddam B . Bringing order to the glutamate chaos in schizophrenia. Neuron 2003; 40: 881–884.

    Article  CAS  Google Scholar 

  16. Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY . Clozapine and haloperidol modulate N-methyl-D-aspartate- and non-N-methyl-D-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 1997; 283: 226–234.

    CAS  PubMed  Google Scholar 

  17. Chen L, Yang CR . Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J Neurophysiol 2002; 87: 2234–2336.

    Google Scholar 

  18. Arvanov VL, Wang RY . Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine. J Pharmacol Exp Ther 1999; 289: 1000–1006.

    CAS  PubMed  Google Scholar 

  19. Kubota T, Jibiki I, Enokido F, Nakagawa H, Watanabe K . Effects of MK-801 on clozapine-induced potentiation of excitatory synaptic responses in the perforant path-dentate gyrus pathway in chronically prepared rabbits. Eur J Pharmacol 2000; 395: 37–42.

    Article  CAS  Google Scholar 

  20. Corbett R . Clozapine but not haloperidol antagonizes an MK-801 discriminative stimulus cue. Pharmacol Biochem Behav 1995; 51: 561–564.

    Article  CAS  Google Scholar 

  21. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR . Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001; 156: 117–154.

    Article  CAS  Google Scholar 

  22. Linn GS, Negi SS, Gerum SV, Javitt DC . Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology (Berl) 2003; 169: 234–239.

    Article  CAS  Google Scholar 

  23. Duncan GE, Leipzig JN, Mailman RB, Lieberman JA . Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 1998; 812: 65–75.

    Article  CAS  Google Scholar 

  24. Jentsch JD, Redmond Jr DE, Elsworth JD, Taylor JR, Youngren KD, Roth RH . Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 1997; 277: 953–955.

    Article  CAS  Google Scholar 

  25. Malhotra AK, Adler CM, Kennison SD, Elman I, Pickar D, Breier A . Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 1997; 42: 664–668.

    Article  CAS  Google Scholar 

  26. Goff DC, Hennen J, Lyoo IK, Tsai G, Wald LL, Evins AE et al. Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to olanzapine. Biol Psychiatry 2002; 51: 493–497.

    Article  CAS  Google Scholar 

  27. Evins AE, Amico ET, Shih V, Goff DC . Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. J Neural Transm 1997; 104: 761–766.

    Article  CAS  Google Scholar 

  28. Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Perez-Samartin A, Matute C, Cozzi A et al. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 2001; 6: 380–386.

    Article  CAS  Google Scholar 

  29. Javitt DC . Glycine modulators in schizophrenia. Curr Opin Investig Drugs 2002; 3: 1067–1072.

    CAS  PubMed  Google Scholar 

  30. Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC . Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 2000; 157: 826–828.

    Article  CAS  Google Scholar 

  31. Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT . D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 1999; 156: 1822–1825.

    CAS  PubMed  Google Scholar 

  32. Goff DC, Tsai G, Manoach DS, Coyle JT . Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 1995; 152: 1213–1215.

    Article  CAS  Google Scholar 

  33. Heresco-Levy U, Javitt DC, Ermilov M, Silipo G, Shimoni J . Double-blind, placebo-controlled, crossover trial of D-cycloserine adjuvant therapy for treatment-resistant schizophrenia. Int J Neuropsychopharmacol 1998; 1: 131–136.

    Article  Google Scholar 

  34. Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC . Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 2002; 159: 480–482.

    Article  Google Scholar 

  35. Evins AE, Amico E, Posever TA, Toker R, Goff DC . D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr Res 2002; 56: 19–23.

    Article  Google Scholar 

  36. Goff DC, Tsai G, Manoach DS, Flood J, Darby D, Coyle JT . D-Cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry 1996; 153: 1628–1630.

    Article  CAS  Google Scholar 

  37. Hood WF, Compton RP, Monahan JB . D-Cycloserine: a ligand for the N-methyl-D-aspartate coupled glycine receptor has partial agonist characteristics. Neurosci Lett 1989; 98: 91–95.

    Article  CAS  Google Scholar 

  38. Supplisson S, Bergman C . Control of NMDA receptor activation by a glycine transporter co- expressed in Xenopus oocytes. J Neurosci 1997; 17: 4580–4590.

    Article  CAS  Google Scholar 

  39. Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL . Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 1992; 8: 927–935.

    Article  CAS  Google Scholar 

  40. Lopez-Corcuera B, Geerlings A, Aragon C . Glycine neurotransmitter transporters: an update. Mol Membr Biol 2001; 18: 13–20.

    Article  CAS  Google Scholar 

  41. Zafra F, Aragon C, Olivares L, Danbolt NC, Gimenez C, Storm-Mathisen J . Glycine transporters are differentially expressed among CNS cells. J Neurosci 1995; 15: 3952–3969.

    Article  CAS  Google Scholar 

  42. Debler EA, Lajtha A . High-affinity transport of gamma-aminobutyric acid, glycine, taurine, L-aspartic acid, and L-glutamatic acid in synaptosomal (P2) tissue: a kinetic and substrate specificity analysis. J Neurochem 1987; 48: 1851–1856.

    Article  CAS  Google Scholar 

  43. Atkinson BN, DeVivo M, Lechner SM, Kowalski L, Zheng Y, Klitenick MA . Characterization of ALX-5407, a GLYT1-selective reuptake inhibitor. Soc Neurosci Abs 2000; 26: 1653.

    Google Scholar 

  44. Harsing Jr LG, Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C et al. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 2003; 74: 811–825.

    Article  CAS  Google Scholar 

  45. Herdon HJ, Godfrey FM, Brown AM, Coulton S, Evans JR, Cairns WJ . Pharmacological assessment of the role of the glycine transporter GlyT- 1 in mediating high-affinity glycine uptake by rat cerebral cortex and cerebellum synaptosomes. Neuropharmacology 2001; 41: 88–96.

    Article  CAS  Google Scholar 

  46. Mackenzie B, Erickson JD . Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 2003; 147: 784–795.

    Google Scholar 

  47. Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG et al. Cloning and functional characterization of a new subtype of the amino acid transport system N. Am J Physiol Cell Physiol 2001; 281: C1757–C1768.

    Article  CAS  Google Scholar 

  48. Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME et al. Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biophys Res Commun 2001; 281: 1343–1348.

    Article  CAS  Google Scholar 

  49. Rae C, Hare N, Bubb WA, McEwan SR, Broer A, McQuillan JA et al. Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 2003; 85: 503–514.

    Article  CAS  Google Scholar 

  50. Javitt DC, Sershen H, Hashim A, Lajtha A . Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology 1997; 17: 202–204.

    Article  CAS  Google Scholar 

  51. Javitt DC, Zukin SR . Biexponential kinetics of [3H]MK-801 binding: evidence for access to closed and open N-methyl-D-aspartate receptor channels. Mol Pharmacol 1989; 35: 387–393.

    CAS  PubMed  Google Scholar 

  52. Sugawara M, Nakanishi T, Fei YJ, Huang W, Ganapathy ME, Leibach FH et al. Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem 2000; 275: 16473–16477.

    Article  CAS  Google Scholar 

  53. Varoqui H, Zhu H, Yao D, Ming H, Erickson JD . Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 2000; 275: 4049–4054.

    Article  CAS  Google Scholar 

  54. Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R et al. Glutamine uptake by neurons: interaction of protons with system A transporters. J Neurosci 2002; 22: 62–72.

    Article  CAS  Google Scholar 

  55. Ling R, Bridges CC, Sugawara M, Fujita T, Leibach FH, Prasad PD et al. Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim Biophys Acta 2001; 1512: 15–21.

    Article  CAS  Google Scholar 

  56. Zafra F, Poyatos I, Gimenez C . Neuronal dependency of the glycine transporter GLYT1 expression in glial cells. Glia 1997; 20: 155–162.

    Article  CAS  Google Scholar 

  57. Gadea A, Lopez-Colome AM . Glial transporters for glutamate, glycine, and GABA III. Glycine transporters. J Neurosci Res 2001; 64: 218–222.

    Article  CAS  Google Scholar 

  58. Guastella J, Brecha N, Weigmann C, Lester HA, Davidson N . Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc Natl Acad Sci USA 1992; 89: 7189–7193.

    Article  CAS  Google Scholar 

  59. Sakata K, Sato K, Schloss P, Betz H, Shimada S, Tohyama M . Characterization of glycine release mediated by glycine transporter 1 stably expressed in HEK-293 cells. Brain Res Mol Brain Res 1997; 49: 89–94.

    Article  CAS  Google Scholar 

  60. Lopez-Corcuera B, Martinez-Maza R, Nunez E, Roux M, Supplisson S, Aragon C . Differential properties of two stably expressed brain-specific glycine transporters. J Neurochem 1998; 71: 2211–2219.

    Article  CAS  Google Scholar 

  61. Roux MJ, Martinez-Maza R, Le Goff A, Lopez-Corcuera B, Aragon C, Supplisson S . The glial and the neuronal glycine transporters differ in their reactivity to sulfhydryl reagents. J Biol Chem 2001; 276: 17699–17705.

    Article  CAS  Google Scholar 

  62. Roux MJ, Supplisson S . Neuronal and glial glycine transporters have different stoichiometries. Neuron 2000; 25: 373–383.

    Article  CAS  Google Scholar 

  63. Fedele E, Foster AC . [3H]glycine uptake in rat hippocampus: kinetic analysis and autoradiographic localization. Brain Res 1992; 572: 154–163.

    Article  CAS  Google Scholar 

  64. Yao D, Mackenzie B, Ming H, Varoqui H, Zhu H, Hediger MA et al. A novel system A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem 2000; 275: 22790–22797.

    Article  CAS  Google Scholar 

  65. Armano S, Coco S, Bacci A, Pravettoni E, Schenk U, Verderio C et al. Localization and functional relevance of system A neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem 2002; 277: 10467–10473.

    Article  CAS  Google Scholar 

  66. Mackenzie B, Schafer MK, Erickson JD, Hediger MA, Weihe E, Varoqui H . Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem 2003; 278: 23720–23730.

    Article  CAS  Google Scholar 

  67. Toth E, Lajtha A . Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 1986; 11: 393–400.

    Article  CAS  Google Scholar 

  68. Javitt DC, Balla A, Sershen H, Lajtha A . A.E. Bennett Research Award. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 1999; 45: 668–679.

    Article  CAS  Google Scholar 

  69. Javitt DC, Frusciante M . Glycyldodecylamide, a phencyclidine behavioral antagonist, blocks cortical glycine uptake: implications for schizophrenia and substance abuse. Psychopharmacology (Berl) 1997; 129: 96–98.

    Article  CAS  Google Scholar 

  70. Harsing Jr LG, Solyom S, Salamon C . The role of glycine B binding site and glycine transporter (GlyT1) in the regulation of [3H]GABA and [3H]glycine release in the rat brain. Neurochem Res 2001; 26: 915–923.

    Article  CAS  Google Scholar 

  71. Brown A, Carlyle I, Clark J, Hamilton W, Gibson S, McGarry G et al. Discovery and SAR of org 24598-a selective glycine uptake inhibitor. Bioorg Med Chem Lett 2001; 11: 2007–2009.

    Article  CAS  Google Scholar 

  72. Atkinson BN, Bell SC, De Vivo M, Kowalski LR, Lechner SM, Ognyanov VI et al. ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol Pharmacol 2001; 60: 1414–1420.

    Article  CAS  Google Scholar 

  73. Mallorga PJ, Williams JB, Jacobson M, Marques R, Chaudhary A, Conn PJ et al. Pharmacology and expression analysis of glycine transporter GlyT1 with [3H]-(N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl])sarcosine. Neuropharmacology 2003; 45: 585–593.

    Article  CAS  Google Scholar 

  74. Bergeron R, Meyer TM, Coyle JT, Greene RW . Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 1998; 95: 15730–15734.

    Article  CAS  Google Scholar 

  75. Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ et al. The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 2003; 23: 7586–7591.

    Article  CAS  Google Scholar 

  76. Chen L, Muhlhauser M, Yang CR . Glycine transporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89: 691–703.

    Article  CAS  Google Scholar 

  77. Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H . Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-D-aspartate receptor/glycine-site agonists. Neuropsychopharmacology 2003.

  78. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.

    Article  CAS  Google Scholar 

  79. Takanaga H, Tokuda N, Ohtsuki S, Hosoya K, Terasaki T . ATA2 is predominantly expressed as system A at the blood–brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol Pharmacol 2002; 61: 1289–1296.

    Article  CAS  Google Scholar 

  80. Denney D, Stevens JR . Clozapine and seizures. Biol Psychiatry 1995; 37: 427–433.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Lazslo Harsing of Egis Pharmaceuticals (Budapest, Hungary) for his gift of NFPS, and to acknowledge the technical contributions of Ms Elizabeth McGrath to this project. This work was funded by NIH Grants R01 DA03383 and K02 MH01438 and a Burroughs Wellcome Translational Scientist Award to DCJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Javitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javitt, D., Duncan, L., Balla, A. et al. Inhibition of System A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 10, 275–287 (2005). https://doi.org/10.1038/sj.mp.4001552

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001552

Keywords

This article is cited by

Search

Quick links