Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The evolution of signaling complexity suggests a mechanism for reducing the genomic search space in human association studies

Abstract

The size complexity of the human genome has been traditionally viewed as an obstacle that frustrates efforts aimed at identifying the genetic correlates of complex human phenotypes. As such complex phenotypes are attributed to the combined action of numerous genomic loci, attempts to identify the underlying multi-locus interactions may produce a combinatorial sum of false positives that drown out the real signal. Faced with such grim prospects for successfully identifying the genetic basis of complex phenotypes, many geneticists simply disregard epistatic interactions altogether. However, the emerging picture from systems biology is that the cellular programs encoded by the genome utilize nested signaling hierarchies to integrate a number of loosely coupled, semiautonomous, and functionally distinct genetic networks. The current view of these modules is that connections encoding inter-module signaling are relatively sparse, while the gene-to-gene (protein-to-protein) interactions within a particular module are typically denser. We believe that each of these modules is encoded by a finite set of discontinuous, sequence-specific, genomic intervals that are functionally linked to association rules, which correlate directly to features in the environment. Furthermore, because these environmental association rules have evolved incrementally over time, we explore theoretical models of cellular evolution to better understand the role of evolution in genomic complexity. Specifically, we present a conceptual framework for (1) reducing genomic complexity by partitioning the genome into subsets composed of functionally distinct genetic modules and (2) improving the selection of coding region SNPs, which results in an increased probability of identifying functionally relevant SNPs. Additionally, we introduce the notion of ‘genomic closure,’ which provides a quantitative measure of how functionally insulated a specific genetic module might be from the influence of the rest of the genome. We suggest that the development and use of theoretical models can provide insight into the nature of biological systems and may lead to significant improvements in computational algorithms designed to reduce the complexity of the human genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Evans WE, Relling MV . Pharmacogenomics: translating functional genomics jnto rational therapeutics. Science 1999; 286: 487–491.

    Article  CAS  Google Scholar 

  2. Evans WE . Pharmacogenomics: marshalling the human genome to individualise drug therapy. Gut 2003; 52(Suppl 2): ii10–ii18.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Botstein D, Risch N . Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003; 33(Suppl): 228–237.

    Article  CAS  Google Scholar 

  4. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhora K . A comprehensive review of genelic association studies. Genet Med 2002; 4: 45–61.

    CAS  Google Scholar 

  5. Glazier AM, Nadeau SK, Aitman TL . Finding genes that underlie complex traits. Science 2002; 298: 2345–2349.

    Article  CAS  Google Scholar 

  6. Rust AG, Mongin E, Birney E . Genome annotation techniques: new approaches and challenges. Drug Discov Today 2002; 7: S70–S76.

    Article  CAS  Google Scholar 

  7. Hotz-Wagenblatt A, Hankeln T, Ernst P, Glatting KH, Schmidt ER, Suhai S . ESTAnnotator: A tool for high throughput EST annotation. Nucleic Acids Res 2003; 31: 3716–3719.

    Article  CAS  Google Scholar 

  8. Okazaki Y, Hankeln T, Ernst P, Glatting KH, Schmidt ER, Suhai S et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 2002; 420: 563–573.

    Article  Google Scholar 

  9. Kanehisa M, Bork P . Bioinformatics in the post-sequence era. Nat Genet 2003; 33(Suppl): 305–310.

    Article  CAS  Google Scholar 

  10. Kirk BW, Feinsod M, Favis R, Kliman RM, Barany F . Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 2002; 30: 3295–3311.

    Article  CAS  Google Scholar 

  11. McGinnis R . Treasure hunting in a new era: genotyping of single nucleotide polymorphisms and the search for complex disease genes by association scans. Psychiatr Genet 2002; 12: 63–66.

    Article  Google Scholar 

  12. Smith DJ, Lusis AJ . The allelic structure of common disease. Hum Mol Genet 2002; 11: 2455–2461.

    Article  CAS  Google Scholar 

  13. Lee C . Irresistible force meets immovable object: SNP mapping of complex diseases. Trends Genet 2002; 18: 67–69.

    Article  Google Scholar 

  14. Comings DE, Gonzalez NS, Cheng Li SC, MacMurray J . A ‘line item’ approach to the identification of genes involved in polygenic behavioral disorders: the adrenergic aipha2A (ADRA2A) gene. Am J Med Genet 2003; 118B: 110–114.

    Article  CAS  Google Scholar 

  15. Henikoff S . Beyond the central dogma. Bioinformatics 2002; 18: 223–225.

    Article  Google Scholar 

  16. Ouzounis C . Bioinformatics and the theoretical foundations of molecular biology. Bioinformatics 2002; 18: 377–378.

    Article  CAS  Google Scholar 

  17. Kitano H . Computational systems biology. Nature 2002; 420: 206–210.

    Article  CAS  Google Scholar 

  18. Kim J . Descartes' fly: the geometry of genomic annotation. Funct Integr Genomics 2001; 1: 241–249.

    Article  CAS  Google Scholar 

  19. Pearson WR . Training for bioinformatics and computational biology. Bioinformatics 2001; 17: 761–762.

    Article  CAS  Google Scholar 

  20. Adami C . What is complexity? BioEssays 2002; 24: 1085–1094.

    Article  Google Scholar 

  21. Broeckel U, Schork NJ . Identifying genes and genetic variation underlying human diseases and complex phenotypes via recombination mapping. J Physiol 2004; 554: 40–45.

    Article  CAS  Google Scholar 

  22. Dean M . Approaches to identify genes for complex human diseases: lessons from Mendelian disorders. Hum Mutat 2003; 22: 261–274.

    Article  CAS  Google Scholar 

  23. Toussaint O, Schneider ED . The thermodynamics and evolution of complexity in biological systems. Comp Biochem Physiol A Mol Integr Physiol 1998; 120: 3–9.

    Article  CAS  Google Scholar 

  24. Frank SA . Developmental selection and self-organization. Biosystems 1997; 40: 237–243.

    Article  CAS  Google Scholar 

  25. Gould SJ, Lloyd EA . Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? Proc Natl Acad Sci USA 1999; 96: 11904–11909.

    Article  CAS  Google Scholar 

  26. Singh RS . Darwin to DNA, molecules to morphology: the end of classical population genetics and the road ahead. Genome 2003; 46: 938–942.

    Article  CAS  Google Scholar 

  27. Ohta T . Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci USA 2002; 99: 16134–16137.

    Article  CAS  Google Scholar 

  28. Krylov DM, Wolf YL, Rogozin IB, Koonin EV . Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res 2003; 13: 2229–2235.

    Article  CAS  Google Scholar 

  29. Denton MJ, Dearden PK, Sowerby SJ . Physical law not natural selection as the major determinant of biological complexity in the subcellular realm: new support for the pre-Darwinian conception of evolution by natural law. Biosystems 2003; 71: 297–303.

    Article  Google Scholar 

  30. Bergman A, Siegal ML . Evolutionary capacitance as a general feature of complex gene networks. Nature 2003; 424: 549–552.

    Article  CAS  Google Scholar 

  31. Gilbert W, de Sousa SJ, Long M . Origin of genes. Proc Natl Acad Sci USA 1997; 94: 7698–7703.

    Article  CAS  Google Scholar 

  32. Van Gestel S, Van Broeckhoven C . Genetics of personality: are we making progress? Mol Psychiatry 2003; 8: 840–852.

    Article  CAS  Google Scholar 

  33. Gustin MC, Albeityn J, Alexander M, Davenport K . MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62: 1264–1300.

    CAS  PubMed  Google Scholar 

  34. Jonak C, Okresz L, Bogre L, Hirt H . Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 2002; 5: 415–424.

    Article  CAS  Google Scholar 

  35. Stanton LA, Underbill TM, Beier F . MAP kinases in chemdrocyte differentiation. Dev Biol 2003; 263: 165–175.

    Article  CAS  Google Scholar 

  36. Ingolia NT, Murray AW . Signal transduction. Science 2002; 297: 948–949.

    Article  CAS  Google Scholar 

  37. Caffrey DR, O'Neill LA, Shields DC . The evolution of the MAP kinase pathways: coduplication of interacting proteins leads to new signaling cascades. J Mol Evol 1999; 49: 567–582.

    Article  CAS  Google Scholar 

  38. Mulkidjanian AY, Cberepanov DA, Galperin MY . Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light. BMC Evol Biol 2003; 3: 12.

    Article  Google Scholar 

  39. Stevenson DS . Co-evolution of the genetic code and ribozyme replication. J Theor Biol 2002; 217: 235–253.

    Article  CAS  Google Scholar 

  40. Kohler H, Murali R, Kieber-Emmons T . The hidden code in genomics: a tool for gene discovery. J Mol Recognit 2001; 14: 269–272.

    Article  CAS  Google Scholar 

  41. Woese CR . On the evolution of cells. Proc Natl Acad Sci USA 2002; 99: 8742–8747.

    Article  CAS  Google Scholar 

  42. Furusawa C, Kaneko K . Origin of multicellular organisms as an inevitable consequence of dynamical systems. Anat Rec 2002; 268: 327–342.

    Article  Google Scholar 

  43. Pross A . The driving force for life's emergence: kinetic and thermodynamic considerations. J Theor Biol 2003; 220: 393–406.

    Article  Google Scholar 

  44. Lenski RE, Ofria C, Pennock RT, Adami C . The evolutionary origin of complex features. Nature 2003; 423: 139–144.

    Article  CAS  Google Scholar 

  45. Eichler EE, Sankoff D . Structural dynamics of eukaryolic chromosome evolution. Science 2003; 301: 793–797.

    Article  CAS  Google Scholar 

  46. Carroll SB . Genetics and the making of Homo sapiens. Nature 2003; 422: 849–857.

    Article  CAS  Google Scholar 

  47. Wolf DM, Arkin AP . Motifs, modules and games in bacteria. Curr Opin Microbiol 2003; 6: 125–134.

    Article  CAS  Google Scholar 

  48. Hasty J, Pradines J, Dolnik M, Collins JJ . Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 2000; 97: 2075–2080.

    Article  CAS  Google Scholar 

  49. Conant GC, Wagner A . Convergent evolution of gene circuits. Nat Genet 2003; 34: 264–266.

    Article  CAS  Google Scholar 

  50. Yokobayashi Y, Weiss R, Arnold FH . Directed evolution of a genetic circuit. Proc Natl Acad Sci USA 2002; 99: 16587–16591.

    Article  CAS  Google Scholar 

  51. Hartwell LH, Hop field JJ, Leibler S, Murray AW . From molecular to modular cell biology. Nature 1999; 402: C47–C52.

    Article  CAS  Google Scholar 

  52. Thieffry D, Huerta AM, Perez-Rueda E, Coilado-Vides J . From specific gene regulation to genomic networks: a global analysis of transcription al regulation in Escherichia coli. BioEssays 1998; 20: 433–440.

    CAS  PubMed  Google Scholar 

  53. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N . Revealing modular organization in the yeast transcriptional network. Nat Genet 2002; 31: 370–377.

    Article  CAS  Google Scholar 

  54. von Dassow G, Meir E, Muoro EM, Odell GM . The segment polarity network is a robust developmental module. Nature 2000; 406: 188–192.

    Article  CAS  Google Scholar 

  55. Thieffry D, Romero D . The modularity of biological regulatory networks. Biosystems 1999; 50: 49–59.

    Article  CAS  Google Scholar 

  56. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, JBarabasi AL . Hierarchical organization of modularity in metabolic networks. Science 2002; 297: 1551–1555.

    Article  CAS  Google Scholar 

  57. Tornow S, Mewes HW . Functional modules by rel atmg protein interaction networks and gene expression. Nucleic Acids Res 2003; 31: 6283–6289.

    Article  CAS  Google Scholar 

  58. Hazzalin CA, Mahadevan LC . MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 2002; 3: 30–40.

    Article  CAS  Google Scholar 

  59. Robinson VL, Buckler DR, Stock AM . A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol 2000; 7: 626–633.

    Article  CAS  Google Scholar 

  60. Miles R . Neurobiology. Ahorneostatic switch. Nature 1999; 397: 215–216.

    Article  CAS  Google Scholar 

  61. Stern MD . Emergence of homeostasis and ‘noise imprinting’ in an evolution model. Proc Natl Acad Sci USA 1999; 96: 10746–10751.

    Article  CAS  Google Scholar 

  62. Ferrell Jr JE . Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and Instability. Curr Opin Cell Biol 2002; 14: 140–148.

    Article  CAS  Google Scholar 

  63. Lauffenburger DA . Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA 2000; 97: 5031–5033.

    Article  CAS  Google Scholar 

  64. Ramani AK, Marcotte EM . Exploiting the co-evolution of interacting proteins to discover interaction specificity. J Mol Biol 2003; 327: 273–284.

    Article  CAS  Google Scholar 

  65. Alon U . Biological networks: the tinkerer as an engineer. Science 2003; 301: 1866–1867.

    Article  CAS  Google Scholar 

  66. Wagner A . Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. Proc Natl Acad Sci USA 1994; 91: 4387–4391.

    Article  CAS  Google Scholar 

  67. Webster KA . Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol 2003; 206: 2911–2922.

    Article  CAS  Google Scholar 

  68. Robert J . Evolution of heat shock protein and immunity. Dev Comp Immunol 2003; 27: 449–464.

    Article  CAS  Google Scholar 

  69. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S . Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 2002; 129: 661–677.

    Article  CAS  Google Scholar 

  70. Ziegler M, Oei SL . A cellular survival switch: poly(AJDP-ribosyl)ation stimulates DNA repair and silences transcription. BioEssays 2001; 23: 543–548.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We have been supported by NIH grants RR017365, MH062777, RR000865, GM61394, K30HL04526, RR16996, HG002500, RR017611, DK063240, T32MH017140, and DK58851, and by awards from the Dana Foundation, NARSAD, and Amgen, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K J L Irizarry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irizarry, K., Merriman, B., Bahamonde, M. et al. The evolution of signaling complexity suggests a mechanism for reducing the genomic search space in human association studies. Mol Psychiatry 10, 14–26 (2005). https://doi.org/10.1038/sj.mp.4001576

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001576

Keywords

This article is cited by

Search

Quick links