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Evaluation of NF-kB subunit expression and
signaling pathway activation demonstrates that
p52 expression confers better outcome in
germinal center B-cell-like diffuse large B-cell
lymphoma in association with CD30 and

BCL2 functions
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Nuclear factor-kB (NF-kB) is a transcription factor with a well-described oncogenic role. Study for each of five
NF-kB pathway subunits was only reported on small cohorts in diffuse large B-cell lymphoma (DLBCL). In this
large cohort (n=533) of patients with de novo DLBCL, we evaluated the protein expression frequency, gene
expression signature, and clinical implication for each of these five NF-kB subunits. Expression of p50, p52, p65,
RELB, and c-Rel was 34%, 12%, 20%, 14%, and 23%, whereas p50/p65, p50/c-Rel, and p52/RELB expression was
11%, 11%, and 3%, respectively. NF-kB subunits were expressed in both germinal center B-cell-like (GCB) and
activated B-cell-like (ABC) DLBCL, but p50 and p50/c-Rel were associated with ABC-DLBCL. p52, RELB, and p52/
RELB expressions were associated with CD30 expression. p52 expression was negatively associated with BCL2
(B-cell lymphoma 2) expression and BCL2 rearrangement. Although p52 expression was associated with better
progression-free survival (PFS) (P=0.0170), singular expression of the remaining NF-kB subunits alone did not
show significant prognostic impact in the overall DLBCL cohort. Expression of p52/RELB was associated
with better overall survival (OS) and PFS (P=0.0307 and P=0.0247). When cases were stratified into GCB- and
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ABC-DLBCL, p52 or p52/RELB dimer expression status was associated with better OS and PFS (P=0.0134 and
P=0.0124) only within the GCB subtype. However, multivariate analysis did not show p52 expression to be an
independent prognostic factor. Beneficial effect of p52 in GCB-DLBC appears to be its positive correlation with
CD30 and negative correlation with BCL2 expression. Gene expression profiling (GEP) showed that p52* GCB-
DLBCL was distinct from p52~- GCB-DLBCL. Collectively, our data suggest that DLBCL patients with p52
expression might not benefit from therapy targeting the NF-kB pathway.
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Nuclear factor-kB (NF-xB) was first described as a
transcription factor essential for immunoglobulin &
light-chain transcription in B lymphocytes in 1986.1
The oncogenic role of NF-«B has been well
described.? NF-xB is a homo- or heterodimer com-
prised of two of five possible subunits, p50, p52, p65
(RELA), RELB, and c-Rel (REL), which all share the
Rel homology domain (RHD). The RHD is character-
ized by a DNA-binding domain, dimerization
domain, and nuclear localization signal (NLS) poly-
peptide domain. The NLS domain contains a binding
site for IkB (a transcription factor inhibitor). p105
and p100 are precursors of p50 and p52, respec-
tively, and they have an IkB-like domain in the C
terminus. Therefore, p105 and p100 act as inhibitors
of NF-«kB activity. p105 is constitutively processed to
produce p50, but p100 is only processed upon
stimulation to produce p52. p50 and p52 are class I
molecules, characterized by a nuclear localization
domain with no transcription activation domain
(TAD). p65, RELB, and c-Rel are class II molecules
with unique TADs in respective molecules. Owing to
the lack of a TAD in class I molecules, a class II
molecule is generally required to activate target gene
expression. In a resting state, NF-xB dimers are
sequestered by IxB proteins in the cytoplasm. Upon
stimulation, IkB proteins are phosphorylated by the
IkB kinase (IKK) complex, which is composed of
IKKa, IKKp, and IKKy. IKKa and IKKp have catalytic
activity, and IKKy (also known as NF-xB essential
modulator, NEMO) has regulatory activity. In the
classical (canonical) pathway, NEMO-dependent
activation of IKKp further phosphorylates IkBa so
that phosphorylated IkBa is further ubiquitinated
and degraded. In the alternative (noncanonical)
pathway, a p100-RELB complex is processed by
NEMO-independent IKKa homodimers to generate
p52-RELB. The free NF-«B dimers translocate into
the nucleus and activate target gene expression.
Diffuse large B-cell lymphoma (DLBCL) is the most
common lymphoid malignancy worldwide. It is a
heterogeneous group of diseases with various mor-
phological variants, immunohistochemical sub-
groups and subtypes.? Using GEP, Alizadeh et al®
showed two molecularly distinct forms of DLBCL
corresponding to the developmental stage of B
lymphocytes-germinal center B-cell-like (GCB)
DLBCL and activated B-cell-like (ABC) DLBCL.®
ABC-DLBCL is characterized by preferential activa-
tion of the canonical NF-xB pathway and nuclear

expression of p50/p65 and p50/c-Rel dimers com-
pared with GCB-DLBCL.” The current standard
therapy for DLBCL is rituximab plus cyclopho-
sphamide, doxorubicin, vincristine, and prednisone
(R-CHOP). Recently, therapeutic agents targeting
NF-«xB pathway are assessed as a front-line therapy.
R-CHOP with bortezomib or lenalidomide with
R-CHOP (R2CHOP) as a front-line therapy for DLBCL
are currently ongoing in several clinical trials.
Therefore, increasing demand for upfront testing of
NF-«xB would be expected. However, little data
regarding expression of all NF-xB subunits in DLBCL
and its clinical significance are available. Moreover,
most previous studies have evaluated only a subset
of the NF-«B subunits.?~15 There are only two studies
using all five subunits in DLBCL-a cohort of 88
patients with DLBCL by Odqvist et al'® and a cohort
of 45 patients with testicular DLBCL by Menter
et al.'” In the current study, we evaluated expression
of all five subunits of the NF-«xB protein by immuno-
histochemistry and its clinical implications in a large
cohort of patients with de novo DLBCL.

Materials and methods
Patient Selection

We studied a cohort of 533 patients with de novo
DLBCL treated with R-CHOP or R-CHOP-like
therapy, collected as part of the International DLBCL
Rituximab-CHOP Consortium Program Study.!®19
All cases were classified following the World Health
Organization classification criteria after review
by a group of hematopathologists. Cases that were
excluded from this study included: large-cell trans-
formation from low-grade B-cell lymphoma,
DLBCL associated with Epstein—Barr virus, immuno-
deficiency-associated lymphoproliferative disorders
(especially human immunodeficiency virus infec-
tion), T-cell/histiocyte-rich large B-cell lymphoma,
primary mediastinal large B-cell lymphoma, primary
cutaneous B-cell lymphoma, and primary central
nervous system DLBCL. This study was approved by
the Institutional Review Boards (IRBs) of all partici-
pating institutions. The overall study was approved
by the IRB at The University of Texas MD Anderson
Cancer Center in Houston, Texas, USA. This study
was conducted in accord with the Declaration of
Helsinki.
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Tissue Microarray Immunohistochemical Studies for
NF-xB Pathways and Subunits

Tumor-rich areas were selected for tissue microarray
construction as described previously.'® Immuno-
histochemical studies for various markers were
performed; NF-«kB subunits (p52, p50, p65, RELB,
and c-Rel), B-cell lymphoma 2 (BCL2), B-cell
lymphoma 6 (BCL6), CD10, CD30, Forkhead box
protein P1 (FOXP1), germinal center B-cell-
expressed transcript-1 (GCET1), multiple myeloma
oncogene 1 (MUM1), MYC, and phosphorylated
signal transducer and activator of transcription 3
(pSTAT3). Receiver-operating characteristic (ROC)
curve analyses were used to determine a prognos-
tically relevant cutoff with optimal sensitivity and
specificity for each marker.'®2? When an optimal
cutoff value for an individual marker could not be
determined by an ROC curve, a conventional cutoff
value was decided based on reports in the literature.
The cutoff scores for these markers used in this
study were as follows: 20% for CD30 and p53; 30%
for CD10 and BCL6; 40% for MYC; 50% for pSTAT3;
60% for GCET1, MUM1 and FOXP1; and 70%
for BCL2. The cutoff values for NF-kB subunits
were: p50, >20%; p52, >40%; p65, >30%;'% RELB,
>10%; and c-Rel, >20%.

Fluorescence In Situ Hybridization, TP53 Sequencing,
and GEP

Fluorescence in situ hybridization (FISH) analysis
for MYC, BCL2, and BCL6 was performed as des-
cribed previously.?! TP53 exon sequencing was
performed and data were analyzed as described
previously.??2 RNA was extracted from 479 formalin-
fixed, paraffin-embedded tissue samples using High-
Pure Paraffin RNA Extraction Kit (Roche Applied
Science, Indianapolis, IN, USA) and subjected to
GEP as described previously.'8?® The CEL files are
deposited in the National Center for Biotechnology
Information Gene Expression Omnibus repository
(GSE#31312).'% Cell-of-origin (COO) classification
was determined primarily based on GEP data and
secondarily using immunohistochemical results and
the Visco-Young algorithm.'8 Hans classification has
also been performed for comparison.?*

Response Definitions and Statistical Analysis

Response assessment was standardized among dif-
ferent institutions following the criteria based on CT
scan and bone marrow biopsy.?® Late deaths not
related to the underlying lymphoma or its treatment
were not considered treatment failures. Overall
survival (OS) was defined from the date of diagnosis
to the date of last follow-up or death. Progression-
free survival (PFS) was defined from the date of diag-
nosis to the date of progression or death. Survival
probability was determined using the Kaplan—Meier
method, with differences compared by the log-rank
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test. A Cox proportional-hazards model was used for
univariate and multivariate analysis. Variables with
P <0.05 (two-sided) were considered to be statis-
tically significant. Categorical variables were com-
pared using the Fisher’s exact test. GraphPad Prism
V5 (La Jolla, CA, USA) and SPSS Statistics V21
(Armonk, NY, USA) were used for statistical
analyses.

Results
Patient Characteristics

Three hundred and six (57%) patients were men and
227 (43%) were women. Two hundred and thirty
(43%) patients were < 60 years and 303 (57%) were
> 60 years of age. Serum lactate dehydrogenase (LDH)
level was elevated in 304 (63%) patients and B
symptoms were present in 154 (33%) patients. One
hundred and thirty (33%) patients had bulky (>6 cm)
diseases and 114 (22%) patients had >2 extranodal
sites of involvement. Two hundred and sixty-six
(52%) patients had advanced stage (stages III and IV)
disease. Seventy-two (16%) patients had a Eastern
Cooperative Oncology Group (ECOG) score >2 and
221 (42%) patients had an IPI >3. Four hundred
seventy-one (88%) patients had either complete
remission or partial remission. Two hundred eighty
(54%) and 243 (46%) patients had GCB and ABC
DLBCL, respectively. Ten patients were unclassi-
fiable owing to the lack of GEP data and/or tissue
exhaustion. Based on Hans classification,?* 421 out
of 488 (86.3%) available cases showed concor-
dance compared with our result. Such observation
has been found in several former and current
publications, 18:21:22.24.26-28

Expression of NF-xB Subunits in DLBCL

Nuclear expression with or without cytoplasmic
expression of each marker in lymphoma cells was
considered positive (Figure 1a). Excluding 36 cases
with tissue exhaustion, a total of 278 (56%) cases
expressed at least one of NF-xB subunits (Table 1). In
detail, expression of single, 2, 3, and 4 subunits was
seen in 147 (53%), 84 (30%), 38 (14%), and 9 (3%)
cases, respectively. Cases with expression of all five
subunits were not found. Overall, expression of p50,
P52, p65, RELB, and c-Rel was observed in 150/443
(34%), 56/455 (12%), 92/461 (20%), 64/452 (14%),
and 103/439 (23%) cases, respectively. p50 expres-
sion was found as single, 2, 3, and 4 subunits in 55
(37%), 55 (37%), 31 (21%), and 9 (6%) cases,
respectively. p50/p65 (n=25) and p50/c-Rel (n=16)
dimer expression were the predominant forms.
Predilection for p65 and c-Rel in p50-expressing
cases was seen in cases with three subunit expres-
sion (p50/p65/c-Rel, n=12). p52 expression was
found as single, 2, 3, and 4 subunits in 15 (27%),
20 (36%), 16 (29%), and 5 (9%) cases, respectively.
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Figure 1 Expression of each nuclear factor-xB (NF-xB) subunit. (a) Sheets of large atypical lymphoid cells, which is a typical appearance
of diffuse large B-cell lymphoma (DLBCL) (hematoxylin and eosin (H&E) x 600). Nuclear with or without cytoplasmic expression of each
NF-xB subunit was considered positive (x600). (b) Distribution of cell-of-origin with respect to expression of each NF-kB subunit.
Two-sided P-value was calculated with Fisher’s exact test. ABC, activated B-cell-like; GCB, germinal center B-cell-like.

Table 1 Expression of NF-xB subunit as single, dimer, 3-mer, and 4-mer in de novo diffuse large B-cell lymphoma

Single n=147 Dimer n=_84 3-Mer n=38 4-Mer n=9 Negative n=219
p50 55 p50/p52 8 p50/p52/p65 1 p50/p52/p65/RELB 2 N/A n=36
p52 15 p50/p65 25 p50/p52/RELB 2 p50/p52/p65/c-Rel 2
p65 29 p50/RELB 6 p50/p52/c-Rel 7 p50/p52/RELB/c-Rel 1
RELB 20 p50/c-Rel 16 p50/p65/RELB 2 p50/p65/RELB/c-Rel 4
c-Rel 28 p52/p65 2 p50/p65/c-Rel 12 p52/p65/RELB/c-Rel 0

p52/RELB 3 p50/RELB/c-Rel 7

p52/c-Rel 7 p52/p65/RELB 3

p65/RELB 2 p52/p65/c-Rel 1

p65/c-Rel 6 p52/RELB/c-Rel 2

RELB/c-Rel 9 p65/RELB/c-Rel 1

Abbreviation: N/A, not available.

p50/p52 (n=8) and p52/c-Rel (n=7) were common
forms and p52/RELB dimer was uncommon (n=3).
p65 expression was found as single, 2, 3, and 4
subunits in 29 (32%), 35 (38%), 20 (22%), and 8
(9%) cases, respectively. Other than p50, dimerizing
partners of p65 were scattered. RELB expression was
found as single, 2, 3, and 4 subunits in 20 (31%), 20
(31%), 17 (27%), and 7 (11%) cases, respectively.
RELB/c-Rel dimer (n=9) was the most common
form. c-Rel expression was found as single, 2, 3, and
4 subunits in 28 (27%), 38 (37%), 30 (29%), and 7
(7%) cases, respectively. Two hundred and nineteen
cases did not express any NF-xB subunits.

Clinical Features of DLBCL with Expression of NF-«xB
Subunits

We initially compared various clinical features bet-
ween patients with and without expression of each
NF-«kB subunit (Table 2). Compared with DLBCL
patients without p52 expression, p52* DLBCL
patients were younger (< 60 years) (P=0.0089) and
showed a significant trend of limited stage
(P=0.0557). p65* DLBCL patients were more com-
monly men (P=0.0091). Two or more sites of extra-
nodal involvement were more commonly seen in
c-Rel” DLBCL patients (P=0.0022). The remaining
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Table 2 Clinical features and expression of NF-x<B subunits in 533 patients with DLBCL

All patients, p50*, p52*, p65™, RELB*, c-Rel*, p50*/p65*, p50*/c-Rel*, p52*/RELB*,
N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%)

Patients 533 (100) 150 (34) 56 (12) 92 (20) 64 (14) 103 (23) 48 (11) 49 (11) 13 (3)
Gender

Male 306 (57) 86 (57) 29 (52) 65 (71)* 40 (63) 54 (52) 29 (60) 26 (53) 7 (54)

Female 227 (43) 64 (43) 27 (48) 27 (29) 24 (37) 49 (48) 19 (40) 23 (47) 6 (46)
Age (years)

<60 230 (43) 70 (47) 33 (59) 45 (49) 29 (45) 37 (36) 25 (52) 16 (33) 10 (77)

>60 303 (57) 80 (53) 23 (41) 47 (51) 35 (55) 66 (64) 23 (48) 33 (67) 3 (23)
B symptoms

Absent 314 (67) 88 (63) 36 (72) 56 (64) 37 (71) 57 (70) 26 (55) 30 (71) 10 (83)

Present 154 (33) 51(37) 14 (28) 32 (36) 15 (29) 24 (30) 21 (45) 12 (29) 2 (17)
ECOG score

<2 388 (84) 107 (83) 40 (93) 67 (85) 39 (80) 72 (89) 36 (88) 34 (83) 8 (80)

>2 72 (84) 22 (17) 3(7) 12 (15) 10 (20) 9 (11) 5 (12) 7 (17) 2 (20)
Stage

/11 248 (48) 65 (45) 32 (60) 44 (49) 34 (56) 54 (55) 21 (44) 25 (53) 10 (83)

/Iv 266 (52) 80 (55) 21 (40) 46 (51) 27 (44) 44 (45) 27 (56) 22 (47) 2 (17)
Extranodal sites involved

<2 396 (78) 110 (79) 41 (84) 69 (78) 47 (78) 59 (59) 38 (81) 38 (83) 11 (92)

>2 114 (22) 29 (21) 8 (16) 20 (22) 13 (22) 41 (41)* 9 (19) 8 (17) 1 (8)
LDH

Normal 178 (37) 47 (35) 20 (41) 30 (36) 20 (38) 27 (32) 13 (30) 12 (28) 6 (55)

Elevated 304 (63) 87 (65) 29 (59) 53 (64) 33 (62) 57 (68) 31 (70) 31 (72) 5 (45)
IPI

0-2 301 (58) 82 (55) 37 (66) 55 (62) 32 (52) 59 (59) 29 (63) 25 (53) 9 (69)

3-5 221 (42) 66 (45) 19 (34) 34 (38) 30 (48) 41 (41) 17 (37) 22 (47) 4 (31)
Tumor size (cm)

<6 270 (68) 76 (67) 25 (51) 43 (64) 26 (67) 43 (62) 22 (63) 24 (69) 7 (78)

>6 130 (32) 37 (33) 14 (49) 24 (36) 13 (33) 26 (38) 13 (37) 11 (31) 2 (22)
Treatment response

CR/PR 471 (88) 132 (88) 52 (93) 79 (86) 56 (88) 92 (89) 43 (90) 41 (84) 13 (100)

No response 62 (12) 18 (12) 4(7) 13 (14) 8 (12) 11 (11) 5 (10) 8 (16) 0 (0)

Abbreviations: CR, complete remission; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; NF-xB, nuclear factor-xB;

IPI, International Prognostic Index; PR, partial remission.
*P < 0.05.

clinical features were not significantly different
between DLBCL patients with and without p52,
p65, and c-Rel expression. There were no signifi-
cantly different clinical parameters with respect to
p50 and RELB expression in DLBCL. Clinical impli-
cations of common NF-xB dimers (p50/p65, p50/c-Rel,
and p52/RELB) were also evaluated. Compared with
DLBCL without p52/RELB expression, p52*/RELB*
DLBCL patients were younger (< 60 years) and had
stage I or II disease (P=0.0180 and P=0.0156,
respectively). The remaining clinical features were
not significantly different between DLBCL patients
with and without p52/RELB expression. There were
no significantly different clinical parameters with
respect to p50/65 or p50/c-Rel dimer expression in
patients with DLBCL.

MODERN PATHOLOGY (2015) 28, 1202-1213

COO C(lassification, Protein Expression, and Genetic
Features of NF-«B Subunits

Expression of p50, p52, p65, RELB, and c-Rel was
observed in 23%, 13%, 20%, 11%, and 18% of GCB
DLBCL, respectively, and in 35%), 9%, 15%), 13%,
and 22% of ABC DLBCL, respectively (Figure 1b).
Expression of p50/p65, p50/c-Rel, and p52/RELB
was observed in 9%, 7%, and 3% of GCB DLBCL and
in 9%, 12%, and 2% of ABC DLBCL, respectively.
p50 expression and p50/c-Rel dimer expression were
correlated with the ABC subtype (P=0.0088 and
0.0380, respectively) (Table 3). No other NF-xB
subunits or dimers were correlated with COO
classification. CD30 expression was more frequently
observed in p52*, RELB*, and p52*/RELB* DLBCLs
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Table 3 Protein expression and genetic aberrations with respect to NF-xB subunit expression

All patients, p50°, p52°*, p65™, RELB*, c-Rel*, p50*/p65*,  p50*/c-Rel*, p52*/RELB",

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%)
Patients 533 (100) 150 (34) 56 (12) 92 (20) 64 (14) 103 (23) 48 (11) 49 (11) 13 (3)
GCB 280 (54) 65 (44) 35 (65) 55 (60) 32 (50) 49 (48) 25 (52) 19 (40) 8 (62)
ABC 243 (46) 84 (56)* 21 (35) 37 (40) 32 (50) 53 (52) 23 (48) 29 (60)* 5 (38)
CD30* 6 (14) 19 (14) 22 (42)* 9(12) 15 (27)* 15 (16) 6 (15) 7 (17) 8 (67)*
CD30- 391 (86) 115 (86) 30 (58) 68 (88) 41 (73) 76 (84) 34 (85) 35 (83) 4 (33)
pSTAT3* 5 (16) 22 (16) 7 (38) 11 (14) 13 (24) 12 (13) 8 (18) 5 (12) 0 (0)
PSTAT3~ 348 (84) 115 (84) 38 (62) 65 (86) 42 (76) 82 (87) 36 (82) 38 (88) 9 (100)
BCL2* 225 (49) 60 (44) 16 (31) 32 (41) 25 (44) 44 (48) 14 (34) 21 (50) 5 (42)
BCL2~ 232 (51) 75 (56) 36 (69)* 47 (59) 32 (56) 47 (52) 27 (66) 21 (50) 7 (58)
BCL6* 417 (82) 118 (80) 45 (82) 76 (84) 52 (81) 81 (79) 39 (83) 38 (79) 11 (85)
BCL6~ 3 (18) 29 (20) 10 (18) 15 (16) 12 (19) 21 (21) 8 (17) 10 (21) 2 (15)
MYC* 293 (64) 82 (61) 29 (56) 53 (67) 41 (72) 46 (51) 27 (66) 21 (50) 7 (58)
MYC- 164 (36) 52 (39) 23 (44) 26 (33) 16 (38) 45 (49)* 14 (34) 21 (50)* 5 (42)
BCL2 rearranged 7 (19) 15 (12)* 3 (6)* 16 (21) 8 (15) 15 (16) 7 (17) 6 (14) 0 (0)
BCL2 normal 335 (81) 115 (88) 48 (94) 61 (79) 44 (85) 78 (84) 34 (83) 38 (86) 12 (100)
BCL6 rearranged 119 (34) 41 (39) 13 (32) 27 (40) 18 (40) 24 (30) 14 (41) 17 (45) 3 (43)
BCL6 normal 235 (66) 65 (61) 27 (68) 40 (60) 27 (60) 57 (70) 20 (59) 21 (55) 4 (57)
MYC rearranged 8 (9) 8 (6) 1(2) 6 (8) 3 (6) 5 (5) 3(8) 1(2) 0 (0)
MYC normal 386 (91) 118 (94) 46 (98) 68 (92) 48 (94) 86 (95) 36 (92) 41 (98) 10 (100)
TP53 mutation 107 (23) 30 (22) 9 (17) 19 (24) 11 (19) 24 (26) 9 (22) 11 (26) 1 (8)
TP53 wild type 362 (77) 106 (78) 44 (83) 60 (76) 46 (81) 67 (74) 32 (78) 31 (74) 11 (92)
TP53 deletion 5 (14) 16 (12) 7 (13) 8 (9) 7 (12) 15 (15) 6 (14) 9 (19) 2 (15)
TP53 normal 329 (86) 118 (88) 46 (87) 77 (91) 52 (88) 83 (85) 38 (86) 38 (81) 11 (85)
p53+ 163 (36) 40 (30) 16 (30) 26 (34) 17 (30) 27 (30) 11 (28) 13 (32) 0 (0)
P53~ 285 (64) 93 (70) 37 (70) 51 (66) 40 (70) 63 (70) 29 (72) 28 (68) 12 (100)

Abbreviations: ABC, activated B-cell-like subtype; BCL, B-cell lymphoma; GCB, germinal center B-cell-like subtype; pSTAT, phosphorylated signal

transducer and activator of transcription 3.
*P < 0.05.

compared with DLBCL negative for these proteins
(P <0.0001, P=0.0067, and P < 0.0001, respectively)
(Figure 2a). BCL2 expression was less common in
p52* DLBCL (P=0.0073) (Figure 2b). MYC expres-
sion was less frequently observed in DLBCL with
c-Rel and p50/c-Rel expression (P=0.0003 and
P=0.0030, respectively). BCL2 was less frequently
rearranged in p50* and p52* DLBCL compared with
cases without p50 and p52 expression, respectively
(P=0.0080 and P=0.0173, respectively) (Figure 2c).
There were no differences in expression of pSTAT3
and BCL6, rearrangements of the BCL6 and MYC
genes, p53 expression, TP53 deletion, and TP53
mutations with respect to expression of NF-«xB
subunits (Table 3).

Expression of NF«B Subunits and Survival

Except that expression of p52 correlated with better
PFS (P=0.0170) and a trend of better OS (P=0.0549)
(Figure 3), expression of NF-xB subunits was not
associated with significant differences in OS and
PFS in the entire cohort. Survival analysis was also
conducted with stratification of GCB- and ABC-
DLBCLs. In GCB-DLBCL, cases with p52 expression
had longer OS (P=0.0134) and PFS (P=0.0124). To
the contrary, in ABC-DLBCL, cases with p52 expres-
sion were not associated with any significant
differences in OS and PFS.

We also evaluated the potential clinical impact of
common NF-xB dimers (Figure 4). The p52/RELB
dimer expression in DLBCL was associated with
better OS (P=0.0307) and PFS (P=0.0247). p52/
RELB dimer expression status was associated with a
significant trend towards better outcome only within
the GCB subtype (OS and PFS, P=0.0687 and
P=0.1276, respectively). The p50/p65 and p50/c-
Rel dimer expression did not show significant
differences in OS or PFS among all cases or after
stratification of GCB/ABC (data not shown).

In univariate analysis, age (> 60 years), presence of
B symptoms, elevated serum LDH, advanced (III/IV)
stage, ECOG >2 and > 2 sites of extranodal involve-
ment were associated with increased hazard ratio
and expression of p52 was associated with decreased
hazard ratio in GCB-DLBCL. However, in multi-
variate analysis, p52 expression was not identified
as independent prognostic marker in GCB-DLBCL
(P=0.191) (Table 4).

Gene Expression Profiling

We compared the GEP signatures in p52* and p52~
GCB-DLBCL (Figure 5). With an FDR threshold of
0.01, 103 genes were differentially expressed
between the two groups. In p52* GCB-DLBCL, 87
genes and 16 genes were up- and downregulated,
respectively. Among the upregulated genes,
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Figure 2 NF-«xB subunit expression and its correlation. (a) Correlation between CD30 expression and p52, RELB, and p52/RELB
expression. (b) Correlation between BCL2 expression and p52 expression. (c) Correlation between BCL2 rearrangement and p52

expression.

LRRFIP1, NCOR2, FOXO3, BAP1, CFLAR, DUSP4,
SAMSN1, HLA-B, HLA-C, HLA-F, and HLA-G were
significant. LRRFIP1 is a transcriptional repressor
and can regulate the expression of EGFR.2? NCOR?2 is
a nuclear receptor corepressor that mediates tran-
scriptional silencing of target genes.?? FOXO3 may
trigger apoptosis through the expression of genes
necessary for cell death.3 DUSP4 negatively reg-
ulates mitogen-activated protein kinases (MAPKSs).%?
SAMSN1 functions like a tumor suppressor gene
in lung cancer.?? Increased expression of HLA class I
molecules, including HLA-B, -C, -F, and -G, might
induce an antitumor immune reaction. RBAK and
BBX were noteworthy in the group of downregulated
genes. RBAK encodes retinoblastoma-associated
Kriippel protein, which activates androgen receptor-
mediated transcription.?* BBX encodes a transcrip-
tion factor that is necessary for G1- to S-phase cell
cycle progression.®®

Discussion

Immunohistochemical analysis for NF-xB subunits is
arapid and specific method to detect NF-xB pathway
activation in DLBCL.? Although several groups have
shown NF-xkB expression in DLBCL, many of these
studies have lacked cutoff values for respective
NF-xB proteins or did not study all five subunits.
More importantly, they did not specifically exclude
cases with infection by Epstein—Barr virus, which is
known to activate the NF-xB pathway?® or had
relatively small cohort of patients.'® In this study,
expression of p50, p52, p65, RELB, and c-Rel was

MODERN PATHOLOGY (2015) 28, 1202-1213

observed in 34%, 12%, 20%, 14% and 23% of
patients, respectively, and expression of p50/p65,
p50/c-Rel and p52/RELB dimers was seen in 11%,
11% and 3% of patients, respectively. These data are
similar to that reported by Odqvist and Co-workers®
who used similar cutoffs, except that the expression
frequency of class II molecules showed significant
differences. The variations might have resulted from
a difference in the fixation procedure because we
used identical antibodies (p50, rabbit polyclonal
antibody (GeneTex, Irvine, CA, USA); p52, mouse
monoclonal antibody (Millipore, Billerica, MA,
USA); p65, mouse monoclonal antibody (Santa Cruz
biotechnology, Santa Cruz, CA, USA); RELB, rabbit
polyclonal antibody (Santa Cruz Biotechnology,
Santa Cruz, CA, USA); and c-Rel, rabbit polyclonal
antibody (Calbiochem, Darmstadt, Germany)) to
those used by Odqvist et al.'® With a cutoff value
of 30%, Compagno et al showed that about 30% of
GCB-DLBCL and 60% of ABC-DLBCL had nuclear
expression of NF-xB subunits (either p50 or p52)
by immunohistochemistry using rabbit monoclonal
antibodies (Cell Signaling Technology, Danvers, MA,
USA).8 In our cohort, 36% of GCB-DLBCL and 43%
of ABC-DLBCL expressed either p50 or p52, which
are similar to their results in GCB-DLBCL (30%) but
slightly lower in ABC-DLBCL (43%). We speculate
that this difference may be partially due to the
different antibodies. Irrespective of the difference in
expression frequency, we confirmed the expression
of NF-xB subunits in ABC-DLBCL as well as in GCB-
DLBCL. Although constitutive activation of NF-xB is
a hallmark of ABC-DLBCL, several groups have
shown that NF-«B is also activated in a subset of GCB
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all, germinal center B-cell-like (GCB), and activated B-cell-like (ABC) diffuse large B-cell lymphoma.

DLBCLs.31016 Qur data, combined with others,
suggests that activation of the NF-xB pathway is not
limited to ABC-DLBCL. We also found 23 cases with
coexpression of p50 and p52, suggesting that activa-
tion of the classical and alternative pathways are
not mutually exclusive in DLBCL.

Although expression of NF-«B proteins was
observed in GCB-DLBCL, no specific subunit expres-
sion was correlated with the GCB subtype. Instead,
p50 single and p50/c-Rel dimer expression corre-
lated with ABC-DLBCL (Table 3), illustrating activa-
tion of the classical NF-xB pathway in that subtype.
Not surprisingly, when NF-«xB subunits were
expressed in DLBCL, expression of two or more
subunits was more common than single subunit
expression. In addition, we observed 46 DLBCLs

with the expression of three or more subunits.
Taken together, these results suggest functional
redundancy and intrinsic complexity of the NF-xB
pathway in DLBCL.

Interestingly, p52 expression was positively corre-
lated with CD30 expression in DLBCL. CD30 expres-
sion was also correlated with RELB and p52/RELB
expression (Figure 2a). Activation of the alternative
NF-xB pathway by CD30 has been shown in Hodgkin
lymphoma3® and anaplastic large-cell lymphoma,3”
and our results could suggest crosstalk between
the alternative NF-xB pathway and CD30 signaling
in DLBCL. DLBCL with p52 expression negati-
vely correlated with BCL2 expression and BCLZ2
rearrangement (Figures 2b and c). This result is
somewhat surprising because the p52/RELB dimer
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Figure 4 Overall survival (OS) and progression-free survival (PFS) with respect to p52/RELB dimer expression in diffuse large B-cell
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Table 4 Multivariate analysis in GCB DLBCL

HR 95% CI P-value

Age >60 years 2.228 1.209-4.109 0.01

B symptoms 0.993 0.517-1.907  0.983
Serum LDH elevation 1.582 0.888-2.82 0.119
Stage /v 2.31 1.203—4.437 0.012
> 2 Extranodal site involvement 1.862 0.968-3.581 0.063
ECOG >2 2.059 1.018-4.166 0.045
P52 expression 0.384 0.092-1.61 0.191

Abbreviations: CI, confidence interval; DLBCL, diffuse large B-cell
lymphoma; ECOG, Eastern Cooperative Oncology Group; GCB,
germinal center B-cell-like subtype; HR, hazard ratio; LDH, lactate
dehydrogenase.

The significance of the bold is p < 0.05 (statistically significant).
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has been shown to induce BCL2 promoter activity,
resulting in increased BCL2 expression in breast
cancer.”® However, this phenomenon might be
context-specific and such data have not been
reported in DLBCL.

An impact of NF-xB subunit expression on the
prognosis of DLBCL has been reported infrequently.
Curry et al'® showed a worse OS in patients with
c-Rel* GCB-DLBCL compared with that in patients
with c-Rel~ GCB-DLBCL.'® Espinosa et al reported
better outcome in patients with phosphorylated
p65* DLBCL compared with that in patients with
p65~ DLBCL.° However, patients in these two
studies were treated with chemotherapy without
rituximab. Odgqvist et al reported a better outcome
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Figure 5 Gene expression profiling with respect to p52 expression
in germinal center B-cell-like diffuse large B-cell lymphoma
(GCB DLBCL).

in c-Rel® DLBCL compared with that in c-Rel-
DLBCL among patients who had been treated with
R-CHOP.'® However, in our cohort, no single
NF-«kB subunit had an impact on survival, except
p52’s association with better PFS. When cases were
stratified into GCB- and ABC-DLBCL, we showed
that p52 expression in GCB-DLBCL conferred better
outcome. As CD30 and BCL2 are known indepen-
dent prognostic factors in DLBCL,27-3° we controlled
for each of those biomarkers and evaluated the effect
of p52 expression on OS in GCB-DLBCL. When BCL2
was controlled, the beneficial effect of p52 expres-
sion remained in patients with DLBCL without BCL2
expression (P=0.0477), but only a trend toward a
beneficial effect was observed in patients with
DLBCL with BCL2 expression (P=0.2275). Similarly,
improved OS was found in cases of DLBCL without
CD30 expression (P=0.0137), but the beneficial
effect was not observed in cases of DLBCL with
CD30 expression (P=0.2773). Our data suggest that
p52 expression does not overcome the deleterious
prognostic impact of BCL2 in GCB DLBCL, but has a
favorable prognostic effect on DLBCL cases without
CD30 signaling.

Although we could not establish p52 as an
independent prognostic factor in patients with GCB
DLBCL, expression of p52 could represent a unique
subset. GEP identified distinctions between p52*
GCB-DLBCL and p52~ GCB-DLBCL. The genes that
were significantly upregulated in p52* GCB-DLBCL
have roles in apoptosis, negative regulation of the
MAPK pathway, transcriptional repression and
downregulation of cell proliferation. Meanwhile,
the downregulated genes have functions in tran-
scriptional activation and cell cycle progression.
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Numerous studies have shown the prosurvival and
oncogenic potential of the NF-xB pathway in various
cancers. Proapoptotic and antioncogenic functions
of the NF-«xB pathway, particularly in association
with p53, has also been reported. It has been shown
by Jacque et al that RELB inhibits cell proliferation
in murine fibroblasts in a p53-dependent manner.49
Similarly, Schumm et al showed cooperation of p52
and p53 in the regulation of p53 target genes.*!
Rocha et al showed that p52/Bcl-3, an activator of
CCND1, is switched to p52/HDAC repressor by p53
in a human non-small-cell lung cancer cell line.*?
However, we did not observe any correlation
between p52 expression and enhanced expression
of p53. We also evaluated the effect of p52 on
survival in TP53-mutated and TP53-wild-type GCB-
DLBCL, and we observed a trend of better outcome
in p52* cases (P=0.0678 and P=0.0897, respec-
tively). Our result suggests that p52 and TP53/p53
are not associated in GCB-DLBCL.

In summary, we identified a subset of GCB-DLBCL
with superior outcome when expressing p52. p52
expression in GCB DLBCL was positively associated
with CD30 expression and negatively associated
with BCL2 expression and BCLZ2 rearrangement.
However, p52 expression was not found to be an
independent prognostic factor by multivariate ana-
lysis. Nevertheless, p52* GCB-DLBCL is molecularly
distinct from p52~ GCB-DLBCL. Therapeutic agents
targeting the NF-xB pathway have been introduced
into the therapeutic regimen of patients with DLBCLs,
and it is important to identify groups of patients for
whom such therapy might be most appropriate or
patient subsets who might not benefit.344
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