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Biofunctionalized all-polymer photonic lab on a chip with
integrated solid-state light emitter

Andreu Llobera1,2, Joan Juvert1, Alfredo González-Fernández1, Bergoi Ibarlucea1, Ester Carregal-Romero1,
Stephanus Büttgenbach2 and César Fernández-Sánchez1

A photonic lab on a chip (PhLOC), comprising a solid-state light emitter (SSLE) aligned with a biofunctionalized optofluidic multiple

internal reflection (MIR) system, is presented. The SSLE is obtained by filling a microfluidic structure with a phenyltrimethoxysilane

(PhTMOS) aqueous sol solution containing a fluorophore organic dye. After curing, the resulting xerogel solid structure retains the

emitting properties of the fluorophore, which is evenly distributed in the xerogel matrix. Photostability studies demonstrate that after a

total dose (at l5365 nm) greater than 24 J cm22, the xerogel emission decay is only 4.1%. To re-direct the emitted light, the SSLE

includes two sets of air mirrors that surround the xerogel. Emission mapping of the SSLE demonstrates that alignment variations of

150 mm (between the SSLE and the external pumping light source) provide fluctuations in emitted light smaller than 5%. After this

verification, the SSLE is monolithically implemented with a MIR, forming the PhLOC. Its performance is assessed by measuring

quinolone yellow, obtaining a limit of detection (LOD) of (0.6060.01) mM. Finally, the MIR is selectively biofunctionalized with

horseradish peroxidase (HRP) for the detection of hydrogen peroxide (H2O2) target analyte, obtaining a LOD of (0.760.1) mM for

H2O2, confirming, for the first time, that solid-state xerogel-based emitters can be massively implemented in biofunctionalized

PhLOCs.
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INTRODUCTION

Since the introduction of the mTAS concept by Manz and co-workers

in 1990,1 there has been a steady development of this research line,

from the definition of a wide range of architectures and systems2 to the

application of new materials3,4 and the implementation of versatile

production technologies.5 The reduction of size resulted not only in

a decrease in the analysis time and reagent consumption, but also in an

enhancement of the sensitivity and possibility of parallelizing the ana-

lysis without dramatically increasing both the complexity and overall

size of the system. Then, the mTAS concept was further expanded to the

lab on a chip (LOC),6 where all (or most of) the required steps in an

analytical protocol can be pursued. These systems have increasingly

been applied in many different fields such as drug discovery and

development,7 genomics,8 clinical diagnosis9 and cellomics.10 In most

of these examples, an inexpensive, disposable system with superior

performance in terms of sensitivity to a specific analyte is required.

Reduction of fabrication costs is generally associated with the use of

polymeric materials and simple fabrication techniques, among which

poly(dimethylsiloxane) (PDMS) and soft lithography11 are excellent

examples, respectively. PDMS has widely been applied in the develop-

ment of LOCs due to its fabrication simplicity. This elastomeric mater-

ial can be easily patterned by soft lithography. Furthermore, PDMS is

mechanically robust, exhibits a low Young’s modulus (300–800 kPa),

exhibits a low refractive index (n51.41) and is transparent in the UV–

NIR range. However, PDMS is also associated with some important

drawbacks when being applied for biochemical analysis that are related

to its hydrophobic character, which makes the material very prone to

serious nonspecific absorption processes of different organic molecules

and biomolecules. Here, several surface modification processes have

been reported, such as oxygen plasma12 or UV/ozone treatments,13

which produce silanol groups (Si–OH) on the material surface and

allow tuning of its hydrophilic/hydrophobic balance. These groups are

dynamic, and the surface recovers its hydrophobicity with time.

Therefore, subsequent chemical processes must be readily applied to

introduce other functional groups to which different (bio)chemical

compounds can be firmly attached.12 In a different approach, hydroxyl

(2OH) groups are introduced on the PDMS surface by physisorption

of polyvinyl alcohol (PVA) polymer14 and further silanization15 of the

resulting surface. This process allows the introduction of functional

chemical groups that enables the eventual covalent attachment of bio-

molecules,16–18 with the final aim of implementing a microbioreactor

(understood as a biofunctionalized microfluidic element) in the LOC
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that provides the desired selectivity for a specific analyte while min-

imizing interference due to non-specific adsorption of other species.

Equally important is defining the most appropriate transducer to

transform this biorecognition event into a quantifiable signal. Here,

different transduction mechanisms, such as electrochemical,19 mag-

netic20 and optic/photonic,21 have been integrated into LOCs. Among

these options, optical transducers have been demonstrated to be one of

the most sensitive analytical and selective detection methods in cell

biology.22 Transference of this know-how from the macro- to the

microscale has already been demonstrated with the so-called photonic

lab on a chip (PhLOC).23 Micro-optical elements, such as microlenses

and mirrors,24 can be implemented in the vicinity of a microfluidic

network to provide the entire system with the required optical read-

out. Here, an open issue is to provide a mechanically robust, optically

efficient and technologically simple method that allows light in-

coupling. Alignment between the light source and optical system is

by far the most critical aspect in the PhLOC because small variations

(less than 5%) of their relative positions cause unacceptable light

coupling variations. This key aspect likely hampers the massive imple-

mentation of the PhLOC concept and restricts its application to

research labs, where the alignment can accurately be controlled with

the help of micropositioners. One first step toward tackling this issue is

to define self-alignment microchannels for the clamping and position-

ing of fiber optics.25 Although effective, this approach requires trained

users and special tools to define high-quality fiber optic facets, not to

mention their inherent fragility. The optimal configuration would be

to have a disposable light source directly implemented (and hence

aligned) in the PhLOC. Here, two different strategies could be pur-

sued, namely, either heterogeneous or monolithic integration. In the

first case, the final system is obtained by the combination of several

elements defined in different substrates. An example could be the

integration of (organic) light-emitting diodes, (O)LEDs,26 or laser

dyes.27 Despite their good performance, such devices are normally

multilayered, requiring several clean-room fabrication steps. In addi-

tion, the alignment issue is not solved, resulting in limited fabrication

yield and a dramatic increase of the production costs. Conversely,

monolithic integration provides inherent aligned structures because

of the accurate positioning of the different elements at the photomask

level. Despite being a more elegant technology compared with hetero-

geneous integration, the challenges associated with this approach are

much greater. Silicon substrates have proven to be unsuitable for

defining optical elements working in the visible range: the high absor-

bance in the UV–Vis range limits their application to photonics

working in the near infrared (above 1100 nm), whereas the indirect

bandgap hampers their use for implementing light sources. Hybrid

monolithic integration can be an elegant alternative, as demonstrated

by Balslev and co-workers,21 who defined a complete PhLOC, whereby

a light source was integrated using a liquid dye laser and waveguides

and fluidic microchannels were defined with a photostructurable poly-

mer. Nevertheless, liquid dyes are extremely toxic, and thus, their

combination with life science applications is not trivial. This issue is

especially evident when using PDMS. The integration of liquid dyes

with PDMS proves to be difficult, as this material suffers from severe

swelling against most organic solvents and is permeable to both gases

and small molecules (such as dyes). Therefore, alternatives to liquid-

based light sources must be sought.

Solid-state light emitters (SSLEs), which are mechanically and

chemically stable, could be an alternative to liquid dyes. Here, different

materials, such as hybrid organic-inorganic polymers, have proven to

be good candidates.28 Among the candidates, those fabricated using

sol-gel technology consist of solid backbone networks into which

active chemical species can be easily incorporated29 while preserving

their (bio)functionality. The optical properties of such materials

(refractive index and spectral response) can be tailored as a function

of the nature of the different monomers and their ratio.30 Moreover,

the material processing can be tuned to be compatible with microfab-

rication techniques, and micro- and nanostructures can be defined

with smooth and crack-free surfaces. This last point becomes essential

for the fabrication of high-quality photonic elements and systems.31

Not surprisingly, sol-gel technology has already been used to define

waveguides32 and microlenses;33 however, to the best of our know-

ledge, this approach has not been used to implement sol–gel-based

light emitters in LOC devices.

In this work, we present the hybrid monolithic integration of a

xerogel-based SSLE and an optofluidic multiple internal reflection

(MIR) to produce a PhLOC. Although having an advanced configura-

tion, the entire PhLOC only requires a single mask and single substrate

technology. To verify the proposed approach, Atto 390 fluorophore

has been used to define the SSLE, whereas either non-functionalized or

enzymatically functionalized MIR has been implemented. This is the

first time, to the best of our knowledge, that feasible integration of this

type of light source and its successful performance for bioanalytical

applications has been presented using an all-polymer technology.

MATERIALS AND METHODS

Chemicals

A PDMS Sylgard 184 elastomer kit was purchased from Dow Corning

(Midland, MI, USA) and used according to the datasheet. SU-8 2050

and PGMEA (propylene glycol methyl ether acetate) were acquired

from Microresist (Berlin, Germany). The 99% PVA, 99% triethyla-

mine, Tween 20, phenyltrimethoxysilane (PhTMOS), dimethyl

sulfoxide, horseradish peroxidase (HRP type VI), 2,29azino-bis(3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS), and quinoline yellow

dye were purchased from Sigma-Aldrich Co. (St Louis, MO, USA).

The 90% 11-triethoxysilyl undecanal was purchased from ABCR

GmbH & Co. KG (Karlsruhe, Germany). The Atto 390 fluorophore

(labs5390 nm; lfl5479 nm, in water) was purchased from Atto-Tec

GmbH (Siegen, Germany).

Design-I: SSLE

Figure 1a shows the SSLE design, which consists of a pear-shaped

microfluidic element (height: 230 mm, total volume: 2.12 mL), two

diamond-shaped internal reservoirs and inlet/outlet ports. A set of

two air mirrors was also defined to enhance the efficiency of the

coupling to an arbitrary optofluidic system (also included in the

PhLOC, as discussed below). The SSLE concept is as follows.

Assuming that the microfluidic element is filled with a fluorophore

(either in liquid or solid phase), when externally pumped with the

appropriate wavelength, light will be emitted in 4p steradians (Sr).

This behavior is suboptimal if the idea is to couple as much emitted

light as possible in an optofluidic system close to the SSLE. Thus, the

role of the two air mirrors is twofold. First, the mirrors allow multiple

interactions between the excitation wavelength and the SSLE, thus

enhancing the photonic conversion. Second, the mirrors redirect the

emission towards the SSLE tip, allowing a more efficient light coupling

to the optofluidic system. The working principle of the air mirrors is

illustrated in Figure 1b. Considering the refractive indices of PDMS

(n51.41) and air (n51.00), if the light reaches the flat air mirror #1 at

an angle higher than the critical angle (h1.hc545.176), the light under-

goes total internal reflection and will be redirected back to the SSLE.
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Smaller angles (h2,hc) are transmitted through the first mirror

according to the Fresnel laws, reaching the teeth-shaped mirror #2.

The faces of each tooth in mirror #2 work jointly to reflect angles

transmitted through mirror #1. One of the faces is tilted to ensure

total internal reflection at the light incidence point (h01whc ), whereas

the second face back-reflects the light into the SSLE. In addition, the

relative angle of each tooth varies radially along the SSLE to focus the

light towards its tip, as observed in the ray-tracing simulation of the

teeth-shaped mirrors working as a whole depicted in Figure 1c.

Design-II: PhLOC

The disposable PDMS-based PhLOC is illustrated in Figure 1d and

consists of the previously described SSLE directly aligned to a MIR

optofluidic system23 interconnected with the help of a waveguide.

Both the MIR and waveguide make use of air mirrors whose

working principle is identical to that of mirror #1, the single dif-

ference being that the light propagation inside the MIR follows a

zigzag path aided by focusing air mirrors (allowing the optical

path to be enlarged and thus enhancing its sensitivity without a

dramatic increase of the required sample volume).24 Flat air mir-

rors are located at both sides of the bulk PDMS, forming an

interconnecting waveguide between the SSLE and MIR. Finally,

transmitted light is collected at the end of the MIR with the help

of two PDMS microlenses (implemented using only air and PDMS

as constituent materials) and fiber optics positioned in a self-align-

ment microchannel.
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Figure 1 (a) Design of the SSLE using PDMS (gray) as the structural material, fluorophore-doped xerogel (blue), and air (white) for defining the micro-optics elements.

(b) Scheme of the working principle of the two air mirrors, considering incidence angles larger (h1,h01) and smaller (h2) than the critical angle (hc). (c) Ray tracing of the

light emitted from the SSLE and its focusing at the tip. (d) Design of the PhLOC, including the SSLE, the MIR, the interconnecting waveguide, a biconvex microlens and a

self-alignment microchannel for inserting the fiber optics readout. The optical path is shown in red. PDMS, poly(dimethylsiloxane); PhLOC, photonic lab on a chip;

SSLE, solid-state light emitter.
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Fabrication

The PhLOC was fabricated using PDMS and soda-lime glass sub-

strates. The process comprised three main steps, mainly the definition

of the master using a photopatternable polymer, replica molding of

the master using PDMS, and implementation of the SSLE using a

fluorophore-doped organic–inorganic polymer by sol–gel techno-

logy.34 The first two steps make use of standard techniques, and a

detailed description can be found elsewhere.35 Briefly, a 230-mm-thick

layer of SU-8 2050 was spun over a substrate. After the soft bake, it

was exposed to UV light using the appropriate mask. Then, a post-

exposure bake was performed to crosslink the polymeric structure.

Once finished, the wafers were immersed in PGMEA and rinsed vig-

orously until fully developed. To enhance the mechanical robustness

of the masters and to heal possible microcracks generated by internal

stresses, a hard bake was performed for 2 h at 120 6C in an inert

atmosphere. PDMS was prepared by mixing the base elastomer and

curing agent in the standard ratio of 1:10 (v/v). Vigorous stirring and

applied vacuum assured a bubble-free pre-polymer. After pouring the

PDMS onto the master, a second vacuum step was applied to ensure

that no air bubbles remained entrapped between the master and

PDMS. The PDMS was cured at 80 6C for 20 min. and then peeled

off using tweezers. At this point, all the fluidic ports were opened using

a dispenser tip (Q0.5 mm). Then, the PDMS and a flat pre-cleaned

glass substrate were activated with oxygen plasma (PVA TePla AG,

Munich, Germany) at 500 W and 0.8 mbar for 18 s. Afterwards, they

were placed in contact using deionized water as a lubricant. By thermal

processing at 80 6C for 30 min, both the PDMS and glass substrate

were irreversibly sealed. Once the bonding quality was verified by eye

inspection, the SSLE was ready to be filled with the fluorophore-doped

pre-polymerization sol solution, which is an adaptation of the micro-

molding in capillaries soft-lithographic technique.11

Among the myriad different fluorophores suitable for this applica-

tion, Atto 390 was selected because of its high molecular absorption

(24.000 cm21 M21) and quantum yield (0.90) as well as its large

Stokes shift (labs5390 nm, lfl5479 nm, in water). Atto 390 is slightly

hydrophilic and is soluble in polar solvents such as DMF or dimethyl

sulfoxide. Solubility was important to ensure compatibility with dif-

ferent chemical environments, which is crucial to obtain a homogen-

eous dispersion of the fluorophore molecules in the polymeric

material. Nevertheless, the technology presented here is not restricted

to Atto 390; other fluorophores or dyes with similar properties could

also be used.

The fluorophore-doped hybrid organic–inorganic polymer was

synthesized using sol-gel technology.34 The process involved three

main steps: mixing, gelation and drying. During the mixing step, the

pre-polymerization sol solution was prepared by vigorously mixing

500 mL of PhTMOS monomer with 300 mL of a 500 mM Atto 390

solution prepared in H2O/dimethyl sulfoxide 5:1 (v/v) pH 3 (adjusted

with diluted HCl). During this step, the monomer was hydrolyzed and

started to condense, forming siloxane bonds. An acidic medium was

needed to accelerate and favor the hydrolysis of the PhTMOS mono-

mer. At this point, the sol solution was formed. Because the sol is a low-

viscosity liquid, filling of the SSLE fluidic structure was achieved by

capillary forces, thus avoiding the use of external pumps. Once this

microstructure was filled, it was protected from light and left undis-

turbed to allow the polymer to dry at room temperature for 72 h.

During gelation, the viscosity increased sharply, and the solvents in

the solution evaporated and diffused through the PDMS stamp.

Consequently, the final xerogel had a significantly smaller volume

compared with the sol solution. When not properly addressed, this

effect led to a partial emptying of the SSLE. In our case, the diamond-

shaped internal reservoirs assured additional material supply during

the gelification step, thus impeding the SSLE emptying. Once the sol–

gel polymeric material dried, a xerogel matrix with entrapped Atto 390

fluorophore was obtained.

Fluorophore-doped polymer characterization

Fluorophore homogeneous dispersion in the SSLE is of key import-

ance for obtaining a PhLOC with identical performance. In this

context, confocal microscopy analysis was performed using a Leica

TCS SP2 confocal microscope (Leica Geosystems AG, St Gallen,

Switzerland) including an HC PL APO CS 10.03 UV objective with

a 0.40 numerical aperture and a UV 405 nm diode laser as a light

source. The scanned area was 600 mm3600 mm (width3length),

and images were captured every 5 mm in depth with a resolution of

8 bits. Up to 50 pictures were taken to cover all the SSLE thickness.

Photostability

The SSLE photostability was analyzed by irradiation of the structure

with UV light at controlled irradiation doses while acquiring emission

spectra. The recorded spectra were then compared with the reference

spectrum, and the percentages of the initial emission intensity at the

maximum were calculated. The set-up for this study included a mask

aligner as a light source (a MA1006 contact mask aligner equipped

with a 350-W mercury lamp, 2-mm resolution and a split field micro-

scope with 53 and 103 objectives, exposure dose of 9 mJ cm22 at

l5365 nm (i-line); Suss MicroTec, Munich, Germany) and a 230-

mm-diameter multimode optical fiber (Thorlabs Inc., Dachau,

Germany) for collecting the light, coupled to a microspectrometer

(QE 65000-FL; Ocean Optics, Dunedin, FL, USA). Each spectrum

was acquired with an average of 10 scans, and the integration time

was fixed at 100 ms. Because the power density is constant in the mask

aligner, different irradiation doses were achieved by irradiating the

sample at 21 different time intervals between 10 and 2700 s (equiva-

lently, to optical doses between 90 mJ cm22 and 24.3 J cm22).

Mapping emission

The optimal excitation point and alignment tolerances at which the

emitted light intensity has its maximum value at the SSLE tip are key in

validating the emitter configuration proposed in this paper. To this

effect, the SSLE was also fabricated in a separate substrate, consisting

of only the pear-shaped structure, the two air mirrors, the intercon-

nection waveguide, the biconvex microlens and the output self-align-

ment system (a schema of the structure is provided in Supplementary

Fig. S1). Once the doped xerogel was obtained inside the SSLE, a

blue laser (l5405 nm, Laser module NANO 250-532-100; Linos

Photonics, Eschbach, Germany) was coupled to a multimode

230 mm optical fiber, which was positioned on a motorized XY stage

(VT-80, PiMicos, Eschbach, Germany, Thorlabs, Dachau/Munich,

Germany) perpendicular to the plane of the SSLE at a fixed distance

of z51 mm. The readout comprised an identical optical fiber inserted

into the output self-alignment microchannel, coupled to a micro-

spectrometer (QE 65000-FL; Ocean Optics, Dunedin, FL, USA).

This configuration allowed geometric localization of the spots in the

SSLE and simultaneous acquisition of the spectral response. Each

spectrum was acquired with an average of 10 scans, and the integration

time was fixed at 250 ms. This process resulted in an efficiency map of

the SSLE emission as a function of the excitation position with a

resolution of 150 mm. The study was repeated with four SSLE struc-

tures with different Atto concentrations (10, 50, 100 and 500 mM).
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Biofunctionalization

The immobilization of HRP as a biorecognition element on the PDMS

walls of the MIR structure was performed following the protocol

described in Ibarlucea et al.16 Briefly, the inner walls of the MIR were

modified by direct adsorption of PVA linear polymer. This process

introduced hydroxyl groups onto the PDMS surface, which were fur-

ther silanized using the 11-triethoxysilyl undecanal silane containing

an aldehyde end-group.36 The covalent interaction between this

group and a primary amine moiety of the protein structure enabled

the selective robust attachment of the HRP enzyme on the PDMS

surface.

Experimental set-up for the PhLOC and protocol for

absorbance measurements

Light emitted from the blue laser (l5405 nm, Laser module NANO

250-532-100; Linos Photonics) was coupled with a multimode

230 mm optical fiber, which was positioned at the maximum emission

region of the SSLE, in accordance with the previously described map-

ping study. The readout comprised an identical optical fiber, which

was inserted into the output self-alignment microchannel of the MIR

system and connected to the microspectrometer (QE 65000-FL; Ocean

Optics, Dunedin, FL, USA). The acquisition time was fixed at 400 ms,

and each recorded spectrum was the average of 10 scans.

The performance of the PhLOC was first tested by sequentially

injecting quinoline yellow dye aqueous solutions in a concentration

range from 1 to 25 mM. The readout was recorded immediately after

filling the PhLOC, and deionized water was used as a reference.

For final PhLOC validation, biofunctionalized MIRs were tested by

sequentially injecting 30 mL of 0.1 M acetate buffer pH 5.5 solutions

containing 0.5 mM ABTS and increasing concentrations of H2O2 in

the range from 1.4 mM to 27.5 mM. The readout signal of the acetate

buffer electrolyte solution was used as the reference. The measure-

ments were made under quiescent fluid conditions (absence of flow)

in all cases. The generation of the colored product was time dependent

because a delay time was required for the catalytic reaction to occur

and the resulting enzymatic product to diffuse to the bulk of the

solution inside the MIR. A 10-min stabilization time was selected.

Reproducibility studies were performed by calibrating three different

biofunctionalized PhLOCs on three consecutive days.

The results of both analytical studies described above were analyzed

following the protocol presented in Ref. 35. Once the correspond-

ing absorbance vs. concentration calibration curves were obtained,

the limit of detection (LOD) could be estimated following the 3s
IUPAC criteria.37

RESULTS AND DISCUSSION

Fluorophore-doped polymeric SSLE

The results from the confocal microscopy lambda analysis are pre-

sented in Figure 2. Thirteen different emission spectra at different

arbitrary points of the microstructure were recorded; the mean values

for the maximum fluorescence emission intensity and wavelength were

(21966) a.u. (3% coefficient of variation, number of spectra513) and

(45161) nm, respectively. These results indicate that the fluorophore

was homogeneously dispersed in the polymeric material.

A 3D reconstruction of the SSLE emitted light intensity was per-

formed, the projection of which is presented in Figure 2b. As observed,

the fluorescence emission is constant across the structure, which

means the doped xerogel completely filled the SSLE PDMS structure.

This effect can again be associated with the homogeneous fluorophore

distribution on a xerogel SSLE with a constant thickness.

Photostability studies of the SSLE

The photostability study revealed that at low exposure times/radiation

doses, fluctuations in the intensity signal occurred. The signal was

stabilized after 15 min of total exposition time (Supplementary Fig.

S2). With a total dose of 24.3 J cm22, the decay in emission was only

4.1% of the initial value. These results corroborate the high photo-

stability of Atto 390 and straightforwardly, of the SSLE presented here.

Mapping studies

The resulting map of maximum emitted intensities at 450 nm as a

function of the coordinates of the external pumping light source spot

is presented in the image capture shown in Figure 3a, in which the

outline of the pear-shaped structure is indicated with a discontinuous

line. As predicted by the numerical simulations, a symmetrical res-

ponse was observed, with the maximum of coupled light obtained

when exciting along the central longitudinal axis. The output intensity

measured at 450 nm as a function of the Atto fluorophore concentra-

tion is shown in Figure 3b. The maximum intensity values increase

with the fluorophore concentration. The linear trend observed con-

firms that autoabsorption phenomena did not occur at the concentra-

tions used in this work.

The positioning tolerance of the external pumping light source over

the SSLE is also of significant importance when considering integ-
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Figure 2 (a) Emission spectra recorded at 13 different points of the SSLE.

(b) Image of the projection of the confocal images recorded every 5 mm across

the entire SSLE structure. SSLE, solid-state light emitter.
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ration of the PhLOC into a portable reading platform or into a future

mass production system. To this effect, we have defined the longit-

udinal and transversal confidence positioning interval (gL and gT,

respectively), the distance over which the external pumping light

source spot can be moved while maintaining the output intensity at

higher than 95% of the maximum SSLE emission intensity. The results

are presented in Table 1 for all the fluorophore concentrations used. It

can be concluded that whereas gL (longitudinal to the SSLE axis)

presents high tolerance against variations of the pumping excitation

spot (positioning changes between 600 and 1125 mm cause the emitted

light intensity to vary ,5%), the gT tolerance is between half and one

order of magnitude lower, which is consistent with both the mapping

results presented above and the numerical results. Nevertheless,

the gT values (150 mm) are large enough to be attained using mass-

production technologies.

Analytical performance of the PhLOC

Once the SSLE working principle was validated, the whole PhLOC was

fabricated using the above described technology. Figure 4 presents an

image of the final PhLOC under homogeneous wavelength excitation

of 352 nm. In this case, the MIR was filled with a dilution of 50 mM

fluorescein in PBS for better visualization. The extent of the homo-

geneity of the emission from the SSLE can again be observed. In

addition, using the fabrication procedure described in this work, the

SSLE is inherently self-aligned with both the interconnecting wave-

guide and the MIR, dramatically simplifying the implementation of

the main components in any photonic system, namely, the light

source, sensing region and detector (being in this case the SSLE,

MIR and output fiber optics, respectively).

Absorbance measurements were performed using a non-biofunc-

tionalized PhLOC. Quinoline yellow dye is a water-soluble acid dye

that is extensively used as an additive in the food industry38 as well as a
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Figure 3 (a) Experimental emission intensity map study performed with the SSLE

prepared with the 500 mM Atto 390 solution. The outline of the pear-shaped

structure is indicated by the discontinuous line for better visualization. (b)

Maximum emitted intensity recorded at the optimal excitation point (highest

emission) vs. Atto concentration. SSLE, solid-state light emitter.

Table 1 Longitudinal and transversal confidence positioning inter-

vals for each concentration

Concentration (mM)

Longitudinal confidence

positioning interval gL (mm)

Transversal confidence

positioning interval gT (mm)

10 1125 150

50 600 150

100 600 150

500 1050 150

MIR outlet

Self-alignment channel

Biconvex lens

Multiple internal
reflection system

Focusing air mirror

Air mirror waveguide

Teeth-shaped air mirror

Flat air mirror

MIR inlet

SSLE outlet
SSLE inlet

1 mm

Solid-state light emitter

Figure 4 Fabricated PhLOC comprising the SSLE, air mirrors, MIR, biconvex lens

and channel for fiber optics insertion. The MIR was filled with a PBS solution

containing 50 mM fluorescein only for visualization, and the entire system was

placed under homogeneous 352-nm wavelength excitation. A 1-cent euro coin is

also included for size reference. MIR, multiple internal reflection; PhLOC, photo-

nic lab on a chip; SSLE, solid-state light emitter.
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coloring agent in general.39 This dye is also a potential biohazard,

confirmed by genotoxicity tests using in vitro human lymphocytes.40

Therefore, the measurement of its concentration is not only important

in the food industry but also in the environmental water analysis

because of its deleterious effects, particularly for infants.39

Quinoline yellow dye has a maximum absorption wavelength at

lmax5440 nm, which falls inside the Atto 390 emission spectra. The

calibration curve obtained (Supplementary Fig. S3) using this PhLOC

was in the linear range between 1 and 14 mM with a LOD of

(0.6060.01) mM. In comparison, Zhao et al.41 used a carbon nano-

tube-modified electrode to perform electrochemical characterization,

obtaining a linear range between 2.74 mM and 73.18 mM and an LOD

of 1.82 mM. Optical measurements were also provided by other

authors, such as Sorouraddin and co-workers,42 who obtained a

LOD of 3.5 mM. Only using a combination of chromatographic and

spectrophotometric methods was a LOD of 0.4 mM obtained, but this

required a much more complex and expensive approach. Thus, the

PhLOC reported here represents a dramatic improvement in the ana-

lysis of this target analyte compared with the state of the art. In addi-

tion, the hybrid monolithic integration of the SSLE allows for a

simplification of its use and a reduction of the fabrication costs.

Finally, the performance of the biofunctionalized PhLOC for the

detection of H2O2 was assessed. The working principle was based on

the catalytic action of the HRP enzyme in the presence of an ABTS

colorless charge transfer mediator. Upon the reduction of H2O2 to

water, this mediator was concomitantly oxidized to the green-colored

ABTS1? radical cation, which exhibited an intense absorption band

from 390 nm to 445 nm.

Three identical systems were functionalized and measured on three

consecutive days, and the corresponding calibration curves are

presented in Figure 5. The three systems presented a monotonic

increase in the absorbance at a wavelength of 435 nm in solutions

containing increasing concentrations of H2O2 ranging from 1.4 mM

to 8.2 mM, which is consistent with the behavior previously reported

using a PhLOC with an external excitation light source.16 A linear

fitting was performed in this range, and the estimated analytical para-

meters are presented in Table 2.

Good agreement is observed between the different measured

PhLOCs, with a maximum variation of 10% in sensitivity and with

absolute values similar to or better than those previously published for

other optical biosensing approaches for H2O2.16,43 These results con-

firm the feasibility of monolithically implementing a low-cost SSLE in

a PhLOC without increasing the technological complexity while main-

taining the performance of the other components of the system. In

addition, even though this work was performed with Atto 390 fluor-

ophore, any other molecule (or quantum dots) with photonic re-

emission could have been used instead, conferring to the proposed

PhLOC an outstanding flexibility. Similarly, the use of HRP was

selected to benchmark the PhLOC against a well-established enzym-

atic response. Nevertheless, other enzymes that are more clinically or

biologically relevant could also be used in combination with this

PhLOC approach.

CONCLUSIONS

We demonstrate the easy integration and successful performance of a

PhLOC with a SSLE made of a fluorophore-doped hybrid xerogel

material and a MIR as the main elements. The resulting photonic

approach can be fabricated at low cost because the fabrication only

requires one photolithographic step. Thus, the elements of such sys-

tems are inherently aligned. Coupling enhancement between the SSLE

and MIR was achieved by defining air mirrors surrounding the SSLE to

redirect emitted light toward the MIR. Confocal studies of the SSLE

revealed homogeneous fluorophore dispersion. Using quinoline yel-

low as a colored target analyte, the feasibility of this approach was

verified, obtaining a LOD of (0.6060.01) mM. Finally, the MIR was

selectively biofunctionalized with HRP, and the PhLOC was bench-

marked against hydrogen peroxide (H2O2) as a target analyte, provid-

ing a LOD of (0.760.1) mM for H2O2. This detection strategy could be

applied to other enzyme- or immunoassay-based analytical tools for

the measurement of a wide range of target analytes and validates both

the proposed PhLOC and its fabrication strategy.
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22 Lepage D, Jiménez A, Beauvais J, Dubowski JJ. Real-time detection of influenza A
virus using semiconductor nanophotonics. Light Sci Appl 2013; 2: e62.
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