Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells

Subjects

Abstract

Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Guo J, Zeitlin C, Wimmer-Schweingruber RF, Hassler DM, Ehresmann B, Kohler J et al. MSL-RAD radiation environment measurements. Radiat Prot Dosimetry 2015; 166: 290–294.

    Article  CAS  PubMed  Google Scholar 

  2. Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL et al. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science 2014; 343: 1244797.

    Article  CAS  PubMed  Google Scholar 

  3. Kohler J, Ehresmann B, Zeitlin C, Wimmer-Schweingruber RF, Hassler DM, Reitz G et al. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory. Life Sci Space Res (Amst) 2015; 5: 6–12.

    Article  CAS  Google Scholar 

  4. Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 2013; 340: 1080–1084.

    Article  CAS  PubMed  Google Scholar 

  5. Durante M, Cucinotta FA . Physical basis of radiation protection in space travel. Rev Mod Phys 2011; 83: 1245–1281.

    Article  CAS  Google Scholar 

  6. Durante M, Cucinotta FA . Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 2008; 8: 465–472.

    Article  CAS  PubMed  Google Scholar 

  7. Cucinotta FA . Review of NASA approach to space radiation risk assessments for Mars exploration. Health Phys 2015; 108: 131–142.

    Article  CAS  PubMed  Google Scholar 

  8. Cucinotta FA . Biophysics of NASA radiation quality factors. Radiat Prot Dosimetry 2015; 166: 282–289.

    Article  CAS  PubMed  Google Scholar 

  9. Cucinotta FA, Schimmerling W, Wilson JW, Peterson LE, Badhwar GD, Saganti PB et al. Space radiation cancer risks and uncertainties for Mars missions. Radiat Res 2001; 156: 682–688.

    Article  CAS  PubMed  Google Scholar 

  10. Badhwar GD . Shuttle radiation dose measurements in the International Space Station orbits. Radiat Res 2002; 157: 69–75.

    Article  CAS  PubMed  Google Scholar 

  11. Badhwar GD, Nachtwey DS, Yang T-H . Radiation issues for piloted Mars mission. Adv Space Res 1992; 12: 195–200.

    Article  CAS  PubMed  Google Scholar 

  12. Bottollier-Depois JF, Chau Q, Bouisset P, Kerlau G, Plawinski L, Lebaron-Jacobs L . Assessing exposure to cosmic radiation during long-haul flights. Radiat Res 2000; 153: 526–532.

    Article  CAS  PubMed  Google Scholar 

  13. Cucinotta FA . Once we know all the radiobiology we need to know, how can we use it to predict space radiation risks and achieve fame and fortune? Phys Med 2001; 17: 5–12.

    PubMed  Google Scholar 

  14. Nachtwey DS, Yang TC . Radiological health risks for exploratory class missions in space. Acta Astronaut 1991; 23: 227–231.

    Article  CAS  PubMed  Google Scholar 

  15. Petrov VM . Radiation risk during long-term spaceflight. Adv Space Res 2002; 30: 989–994.

    Article  CAS  PubMed  Google Scholar 

  16. Todd P . Space radiation health: a brief primer. Gravit Space Biol Bull 2003; 16: 1–4.

    PubMed  Google Scholar 

  17. Townsend LW . Implications of the space radiation environment for human exploration in deep space. Radiat Prot Dosimetry 2005; 115: 44–50.

    Article  CAS  PubMed  Google Scholar 

  18. Barcellos-Hoff MH, Blakely EA, Burma S, Fornace Jr AJ, Gerson S, Hlatky L et al. Concepts and challenges in cancer risk prediction for the space radiation environment. Life Sci Space Res (Amst) 2015; 6: 92–103.

    Article  Google Scholar 

  19. Simonsen LC, Wilson JW, Kim MH, Cucinotta FA . Radiation exposure for human Mars exploration. Health Phys 2000; 79: 515–525.

    Article  CAS  PubMed  Google Scholar 

  20. Cucinotta FA . A new approach to reduce uncertainties in space radiation cancer risk predictions. PLoS One 2015; 10: e0120717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rapp D . Radiation Effects and Shielding Requirements in Human Missions to the Moon and Mars. MARS 2006; 2: 46–71.

    Article  Google Scholar 

  22. Rapp D . Human Missions to Mars: Enabling Technologies for Exploring the Red Planet. Springer Praxis Books: Berlin, Heidelberg, 2008.

    Google Scholar 

  23. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation: Washington (DC) 2012.

  24. Cucinotta FA, Kim MH, Chappell LJ, Huff JL . How safe is safe enough? Radiation risk for a human mission to Mars. PLoS One 2013; 8: e74988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hada M, Sutherland BM . Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 2006; 165: 223–230.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou G, Bennett PV, Cutter NC, Sutherland BM . Proton-HZE-particle sequential dual-beam exposures increase anchorage-independent growth frequencies in primary human fibroblasts. Radiat Res 2006; 166: 488–494.

    Article  CAS  PubMed  Google Scholar 

  27. Raber J, Allen AR, Sharma S, Allen B, Rosi S, Olsen RH et al. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus. Radiat Res 2016; 185: 20–30.

    Article  CAS  PubMed  Google Scholar 

  28. Nzabarushimana E, Prior S, Miousse IR, Pathak R, Allen AR, Latendresse J et al. Combined exposure to protons and (56)Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. Life Sci Space Res (Amst) 2015; 7: 1–8.

    Article  Google Scholar 

  29. Ramadan SS, Sridharan V, Koturbash I, Miousse IR, Hauer-Jensen M, Nelson GA et al. A priming dose of protons alters the early cardiac cellular and molecular response to (56)Fe irradiation. Life Sci Space Res (Amst) 2016; 8: 8–13.

    Article  Google Scholar 

  30. Kadhim MA, Lorimore SA, Townsend KM, Goodhead DT, Buckle VJ, Wright EG . Radiation-induced genomic instability: delayed cytogenetic aberrations and apoptosis in primary human bone marrow cells. Int J Radiat Biol 1995; 67: 287–293.

    Article  CAS  PubMed  Google Scholar 

  31. Kadhim MA, Wright EG . Radiation-induced transmissable chromosomal instability in haemopoietic stem cells. Adv Space Res 1998; 22: 587–596.

    Article  CAS  PubMed  Google Scholar 

  32. Kato K, Omori A, Kashiwakura I . Radiosensitivity of human haematopoietic stem/progenitor cells. J Radiol Prot 2013; 33: 71–80.

    Article  CAS  PubMed  Google Scholar 

  33. Nagayama H, Misawa K, Tanaka H, Ooi J, Iseki T, Tojo A et al. Transient hematopoietic stem cell rescue using umbilical cord blood for a lethally irradiated nuclear accident victim. Bone Marrow Transplant 2002; 29: 197–204.

    Article  CAS  PubMed  Google Scholar 

  34. Cengel KA, Diffenderfer ES, Avery S, Kennedy AR, McDonough J . Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure. Radiat Environ Biophys 2010; 49: 715–721.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reems JA, Hall KM, Gebru LH, Taber G, Rich IN . Development of a novel assay to evaluate the functional potential of umbilical cord blood progenitors. Transfusion 2008; 48: 620–628.

    Article  PubMed  Google Scholar 

  36. Hayakawa J, Hsieh MM, Uchida N, Phang O, Tisdale JF . Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem Cells 2009; 27: 175–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen L, Zhang JS, Cui D, Liu DG . Cytological diagnosis of T lymphoblastic leukemia/lymphoma in patients with pleural effusion as an initial clinical presentation: two case reports of an algorithmic approach using complete immunohistochemical phenotyping. Acta Cytol 2015; 59: 485–492.

    Article  PubMed  Google Scholar 

  38. Kim DY, Park HS, Choi EJ, Lee JH, Lee JH, Jeon M et al. Immunophenotypic markers in adult acute lymphoblastic leukemia: the prognostic significance of CD20 and TdT expression. Blood Res 2015; 50: 227–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lahjouji A, Bachir F, Bennani S, Quessar A, Amzazi S . The immunophenotype of adult T acute lymphoblastic leukemia in Morocco. Exp Oncol 2015; 37: 64–69.

    Article  CAS  PubMed  Google Scholar 

  40. Subashchandrabose P, Ramiah Madanagopaal L, Subba Rao TM . Diagnosis and classification of acute leukemia in bone marrow trephine biopsies, utility of a selected panel of minimal immunohistochemical markers. Int J Hematol Oncol Stem Cell Res 2016; 10: 138–146.

    PubMed  PubMed Central  Google Scholar 

  41. Cogoli A . The effect of space flight on human cellular immunity. Environ Med 1993; 37: 107–116.

    CAS  PubMed  Google Scholar 

  42. Gmunder FK, Konstantinova I, Cogoli A, Lesnyak A, Bogomolov W, Grachov AW . Cellular immunity in cosmonauts during long duration spaceflight on board the orbital MIR station. Aviat Space Environ Med 1994; 65: 419–423.

    CAS  PubMed  Google Scholar 

  43. Chapes SK, Simske SJ, Forsman AD, Bateman TA, Zimmerman RJ . Effects of space flight and IGF-1 on immune function. Adv Space Res 1999; 23: 1955–1964.

    Article  CAS  PubMed  Google Scholar 

  44. Sonnenfeld G . Immune responses in space flight. Int J Sports Med 1998; 19: S195–S202, discussion S202-194.

    Article  CAS  PubMed  Google Scholar 

  45. Sonnenfeld G, Shearer WT . Immune function during space flight. Nutrition 2002; 18: 899–903.

    Article  CAS  PubMed  Google Scholar 

  46. Stowe RP, Sams CF, Pierson DL . Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 2003; 74: 1281–1284.

    PubMed  Google Scholar 

  47. Taylor GR . Immune changes in humans concomitant with space flights of up to 10 days duration. Physiologist 1993; 36: S71–S74.

    CAS  PubMed  Google Scholar 

  48. Taylor GR, Janney RP . In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J Leukoc Biol 1992; 51: 129–132.

    Article  CAS  PubMed  Google Scholar 

  49. Walther I, Cogoli A, Pippia P, Meloni MA, Cossu G, Cogoli M et al. Human immune cells as space travelers. Eur J Med Res 1999; 4: 361–363.

    CAS  PubMed  Google Scholar 

  50. Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 2013; 33: 456–465.

    Article  CAS  PubMed  Google Scholar 

  51. Mehta SK, Crucian BE, Stowe RP, Simpson RJ, Ott CM, Sams CF et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine 2013; 61: 205–209.

    Article  CAS  PubMed  Google Scholar 

  52. Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Sams CF, Pierson DL . Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav Immun 2014; 41: 210–217.

    Article  CAS  PubMed  Google Scholar 

  53. Fleenor CJ, Higa K, Weil MM, DeGregori J . Evolved cellular mechanisms to respond to genotoxic insults: implications for radiation-induced hematologic malignancies. Radiat Res 2015; 184: 341–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fleenor CJ, Marusyk A, DeGregori J . Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 2010; 9: 3005–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marusyk A, Casas-Selves M, Henry CJ, Zaberezhnyy V, Klawitter J, Christians U et al. Irradiation alters selection for oncogenic mutations in hematopoietic progenitors. Cancer Res 2009; 69: 7262–7269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J . Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol 2010; 8: e1000324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shao L, Luo Y, Zhou D . Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal 2014; 20: 1447–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C . Alterations in adaptive immunity persist during long-duration spaceflight. Microgravity 2015; 1: 1–10.

    Google Scholar 

  59. Feng Y, Zhang N, Jacobs KM, Jiang W, Yang LV, Li Z et al. Polarization imaging and classification of Jurkat T and Ramos B cells using a flow cytometer. Cytometry A 2014; 85: 817–826.

    Article  CAS  PubMed  Google Scholar 

  60. Task Group on Radiation Quality Effects in Radiological Protection CoREICoRP. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w(R)). Ann ICRP 2003; 33: 1–117.

    Google Scholar 

  61. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ . ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276: 42462–42467.

    Article  CAS  PubMed  Google Scholar 

  62. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM . A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000; 10: 886–895.

    Article  CAS  PubMed  Google Scholar 

  63. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  64. Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA . ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 2004; 64: 2390–2396.

    Article  CAS  PubMed  Google Scholar 

  65. Cucinotta FA, Nikjoo H, Goodhead DT . Model for radial dependence of frequency distributions for energy imparted in nanometer volumes from HZE particles. Radiat Res 2000; 153: 459–468.

    Article  CAS  PubMed  Google Scholar 

  66. Mirsch J, Tommasino F, Frohns A, Conrad S, Durante M, Scholz M et al. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue. Proc Natl Acad Sci USA 2015; 112: 12396–12401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lopez Perez R, Best G, Nicolay NH, Greubel C, Rossberger S, Reindl J et al. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. FASEB J 2016; 30: 2767–2776.

    Article  CAS  PubMed  Google Scholar 

  68. Rall M, Kraft D, Volcic M, Cucu A, Nasonova E, Taucher-Scholz G et al. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells. Front Oncol 2015; 5: 250.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Saha J, Wilson P, Thieberger P, Lowenstein D, Wang M, Cucinotta FA . Biological characterization of low-energy ions with high-energy deposition on human cells. Radiat Res 2014; 182: 282–291.

    Article  CAS  PubMed  Google Scholar 

  70. Asaithamby A, Hu B, Chen DJ . Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci USA 2011; 108: 8293–8298.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vandevoorde C, Vral A, Vandekerckhove B, Philippe J, Thierens H . Radiation sensitivity of human CD34(+) cells versus peripheral blood T lymphocytes of newborns and adults: DNA repair and mutagenic effects. Radiat Res 2016; 185: 580–590.

    Article  CAS  PubMed  Google Scholar 

  72. Kraft D, Rall M, Volcic M, Metzler E, Groo A, Stahl A et al. NF-kappaB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia 2015; 29: 1543–1554.

    Article  CAS  PubMed  Google Scholar 

  73. Wilson PF, Nham PB, Urbin SS, Hinz JM, Jones IM, Thompson LH . Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Mutat Res 2010; 683: 91–97.

    Article  CAS  PubMed  Google Scholar 

  74. de Toledo SM, Buonanno M, Li M, Asaad N, Qin Y, Gonon G et al. The impact of adaptive and non-targeted effects in the biological responses to low dose/low fluence ionizing radiation: the modulating effect of linear energy transfer. Health Phys 2011; 100: 290–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Feinendegen LE . Quantification of adaptive protection following low-dose irradiation. Health Phys 2016; 110: 276–280.

    Article  CAS  PubMed  Google Scholar 

  76. Wolff S . The adaptive response in radiobiology: evolving insights and implications. Environ Health Perspect 1998; 106: 277–283.

    PubMed  PubMed Central  Google Scholar 

  77. Elmore E, Lao XY, Kapadia R, Swete M, Redpath JL . Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat Res 2011; 176: 291–302.

    Article  CAS  PubMed  Google Scholar 

  78. Buonanno M, De Toledo SM, Howell RW, Azzam EI . Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. J Radiat Res 2015; 56: 502–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kraft D, Ritter S, Durante M, Seifried E, Fournier C, Tonn T . Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure. Mutat Res 2015; 777: 43–51.

    Article  CAS  PubMed  Google Scholar 

  80. Steffen LS, Bacher JW, Peng Y, Le PN, Ding LH, Genik PC et al. Molecular characterisation of murine acute myeloid leukaemia induced by 56Fe ion and 137Cs gamma ray irradiation. Mutagenesis 2013; 28: 71–79.

    Article  CAS  PubMed  Google Scholar 

  81. Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM et al. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One 2014; 9: e104819.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Laprie A, Hu Y, Alapetite C, Carrie C, Habrand JL, Bolle S et al. Paediatric brain tumours: A review of radiotherapy, state of the art and challenges for the future regarding protontherapy and carbontherapy. Cancer Radiother 2015; 19: 775–789.

    Article  CAS  PubMed  Google Scholar 

  83. Smith SM . Red blood cell and iron metabolism during space flight. Nutrition 2002; 18: 864–866.

    Article  CAS  PubMed  Google Scholar 

  84. Willey CD, Gilbert AN, Anderson JC, Gillespie GY . Patient-derived xenografts as a model system for radiation research. Semin Radiat Oncol 2015 Oct; 25: 273–280.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Futrega K, Lott WB, Doran MR . Direct bone marrow HSC transplantation enhances local engraftment at the expense of systemic engraftment in NSG mice. Sci Rep 2016; 6: 23886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Varga NL, Barcena A, Fomin ME, Muench MO . Detection of human hematopoietic stem cell engraftment in the livers of adult immunodeficient mice by an optimized flow cytometric method. Stem Cell Stud 2010; 1, pii e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant #NNX13AB67G from National Aeronautics and Space Administration (NASA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C D Porada.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodman, C., Almeida-Porada, G., George, S. et al. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia 31, 1398–1407 (2017). https://doi.org/10.1038/leu.2016.344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.344

This article is cited by

Search

Quick links