Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Establishment of a congenital amegakaryocytic thrombocytopenia model and a thrombocyte–specific reporter line in zebrafish

Subjects

Abstract

Mutations in the human myeloproliferative leukemia (MPL) protein gene are known to cause congenital amegakaryocytic thrombocytopenia (CAMT). The prognosis of this heritable disorder is poor and bone marrow transplantation is the only effective treatment. Here, by using the TALEN (transcription activator-like effector nuclease) technology, we created a zebrafish mpl mutant to model human CAMT. Disruption of zebrafish mpl lead to a severe reduction in thrombocytes and a high bleeding tendency, as well as deficiencies in adult hematopoietic stem/progenitor cells. We further demonstrated that thrombocytopenia in mpl mutant zebrafish was caused by impaired Tpo/Mpl/Jak2 signaling, resulting in reduced proliferation of thrombocyte precursors. These results indicate that mpl mutant zebrafish develop thrombocytopenia resembling the human CAMT. To utilize fully zebrafish to study thrombocyte biology and thrombocytopenia disorders, we generated a transgenic reporter line Tg(mpl:eGFP)smu4, in which green fluorescent protein (GFP) expression was driven by the mpl promoter. Detailed characterization of Tg(mpl:eGFP)smu4 fish confirmed that the thrombocyte lineage was specifically marked by GFP expression. In conclusion, we generated the first transmissible congenital thrombocytopenia zebrafish model mimicking human CAMT and a thrombocyte-specific transgenic line. Together with Tg(mpl:eGFP)smu4, mpl mutant zebrafish provide a useful tool for drug screening and study of thrombocytopoiesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alexander WS . Thrombopoietin and the c-Mpl receptor: insights from gene targeting. Int J Biochem Cell Biol 1999; 31: 1027–1035.

    Article  CAS  Google Scholar 

  2. Rose MJ, Nicol KK, Skeens MA, Gross TG, Kerlin BA . Congenital amegakaryocytic thrombocytopenia: the diagnostic importance of combining pathology with molecular genetics. Pediatr Blood Cancer 2008; 50: 1263–1265.

    Article  Google Scholar 

  3. Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001; 97: 139–146.

    Article  CAS  Google Scholar 

  4. Germeshausen M, Ballmaier M, Welte K . MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Hum Mutat 2006; 27: 296.

    Article  Google Scholar 

  5. Al-Qahtani FS . Congenital amegakaryocytic thrombocytopenia: a brief review of the literature. Clin Med Insights Pathol 2010; 3: 25–30.

    Article  Google Scholar 

  6. Vignal CV, Lourenco DM, Noguti MA, Chauffaille ML, Kerbauy J . Hemorrhagic and thrombotic complications in patients with myeloproliferative diseases. Sao Paulo Med J 1997; 115: 1575–1579.

    Article  CAS  Google Scholar 

  7. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I et al. Whole exome sequencing identifies novel MPL and JAK2 mutations in triple negative myeloproliferative neoplasms. Blood 2015; 127: 325–332.

    Article  Google Scholar 

  8. Hirata S, Takayama N, Jono-Ohnishi R, Endo H, Nakamura S, Dohda T et al. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest 2013; 123: 3802–3814.

    Article  CAS  Google Scholar 

  9. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW . Thrombocytopenia in c-mpl-deficient mice. Science 1994; 265: 1445–1447.

    Article  CAS  Google Scholar 

  10. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D . Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 1996; 87: 2162–2170.

    CAS  PubMed  Google Scholar 

  11. Eaton DL, Sauvage FJD . Thrombopoietin: the primary regulator of megakaryocytopoiesis and thrombopoiesis. Exp Hematol 1997; 25: 1–7.

    CAS  PubMed  Google Scholar 

  12. Broudy VC, Kaushansky K . Thrombopoietin, the c-mpl ligand, is a major regulator of platelet production. J Leukocyte Biol 1995; 57: 719–725.

    Article  CAS  Google Scholar 

  13. Murone M, Carpenter DA, de Sauvage FJ . Hematopoietic deficiencies in c-mpl and TPO knockout mice. Stem Cells 1998; 16: 1–6.

    Article  CAS  Google Scholar 

  14. Kimura S, Roberts AW, Metcalf D, Alexander WS . Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc Natl Acad Sci USA 1998; 95: 1195–1200.

    Article  CAS  Google Scholar 

  15. Liu Y, Kretz CA, Maeder ML, Richter CE, Tsao P, Vo AH et al. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood 2014; 124: 142–150.

    Article  CAS  Google Scholar 

  16. Fish RJ, Di Sanza C, Neerman-Arbez M . Targeted mutation of zebrafish fga models human congenital afibrinogenemia. Blood 2014; 123: 2278–2281.

    Article  CAS  Google Scholar 

  17. Wang K, Huang Z, Zhao L, Liu W, Chen X, Meng P et al. Large-scale forward genetic screening analysis of development of hematopoiesis in zebrafish. J Genet Genomics 2012; 39: 473–480.

    Article  CAS  Google Scholar 

  18. Huiting LN, Laroche F, Feng H . The zebrafish as a tool to cancer drug discovery. Austin J Pharmacol Ther 2015; 3: 1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Khandekar G, Kim S, Jagadeeswaran P . Zebrafish thrombocytes: functions and origins. Adv Hematol 2012; 2012: 1–9.

    Article  Google Scholar 

  20. Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 2005; 106: 3803–3810.

    Article  CAS  Google Scholar 

  21. Long Q, Meng A, Wang H, Jessen JR, Farrell MJ, Lin S . GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 1997; 124: 4105–4111.

    CAS  PubMed  Google Scholar 

  22. Li L, Yan B, Shi YQ, Zhang WQ, Wen ZL . Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J Biol Chem 2012; 287: 25353–25360.

    Article  CAS  Google Scholar 

  23. Yaqoob N, Holotta M, Prem C, Kopp R, Schwerte T . Ontogenetic development of erythropoiesis can be studied non-invasively in GATA-1:DsRed transgenic zebrafish. Comp Biochem Physiol Part A 2009; 154: 270–278.

    Article  Google Scholar 

  24. Kissa K, Murayama E, Zapata A, Cortes A, Perret E, Machu C et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 2008; 111: 1147–1156.

    Article  CAS  Google Scholar 

  25. Lannutti BJ, Epp A, Roy J, Chen J, Josephson NC . Incomplete restoration of Mpl expression in the mpl-/- mouse produces partial correction of the stem cell-repopulating defect and paradoxical thrombocytosis. Blood 2009; 113: 1778–1785.

    Article  CAS  Google Scholar 

  26. Westerfield M . The Zebrafish Book: A Guide for the Laboratory use of Zebrafish (Danio rerio). University of Oregon Press, Eugene, OR, USA, 2007.

    Google Scholar 

  27. Jin H, Sood R, Xu J, Zhen F, English MA, Liu PP et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI. Development 2009; 136: 1397.

    Article  CAS  Google Scholar 

  28. Du L, Xu J, Li X, Ma N, Liu Y, Peng J et al. Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis. Development 2011; 138: 619–629.

    Article  CAS  Google Scholar 

  29. Jagadeeswaran P, Liu YC . A hemophilia model in zebrafish: analysis of hemostasis. Blood Cells Mol Dis 1997; 23: 52–57.

    Article  CAS  Google Scholar 

  30. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B . Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 2011; 29: 699–700.

    Article  Google Scholar 

  31. Ma D, Zhang J, Lin HF, Italiano J, Handin RI . The identification and characterization of zebrafish hematopoietic stem cells. Blood 2011; 118: 289–297.

    Article  CAS  Google Scholar 

  32. Lang MR, Gihr G, Gawaz MP, Ller M II . Hemostasis in Danio rerio: is the zebrafish a useful model for platelet research? J Thromb Haemost 2010; 8: 1159–1169.

    Article  CAS  Google Scholar 

  33. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 1995; 81: 695–704.

    Article  CAS  Google Scholar 

  34. Amigo JD, Ackermann GE, Cope JJ, Yu M, Cooney JD, Ma D et al. The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish. Blood 2009; 114: 4654–4663.

    Article  CAS  Google Scholar 

  35. O'Connor MN, Salles II, Cvejic A, Watkins NA, Walker A, Garner SF et al. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins. Blood 2009; 113: 4754–4762.

    Article  CAS  Google Scholar 

  36. Turner JE, Shea TC . Bone marrow failure syndromes. Clin Med 1999; 19: 113–133.

    Google Scholar 

  37. Ballmaier M, Germeshausen M, Krukemeier S, Welte K . Thrombopoietin is essential for the maintenance of normal hematopoiesis in humans: development of aplastic anemia in patients with congenital amegakaryocytic thrombocytopenia. Ann NY Acad Sci 2003; 996: 17–25.

    Article  CAS  Google Scholar 

  38. Alexander WS, Begley CG . Thrombopoietin in vitro and in vivo. Cytokines Cell Mol Ther 1998; 4: 25–34.

    CAS  PubMed  Google Scholar 

  39. Kaushansky K, Drachman JG . The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production. Oncogene 2002; 21: 3359–3367.

    Article  CAS  Google Scholar 

  40. Oates AC, Brownlie A, Pratt SJ, Irvine DV, Liao EC, Paw BH et al. Gene duplication of zebrafish JAK2 homologs is accompanied by divergent embryonic expression patterns: only jak2a is expressed during erythropoiesis. Blood 1999; 94: 2622–2636.

    CAS  PubMed  Google Scholar 

  41. Besancenot R, Roos-Weil D, Tonetti C, Abdelouahab H, Lacout C, Pasquier F et al. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation. Blood 2014; 124: 2104–2115.

    Article  CAS  Google Scholar 

  42. Ma ACH, Fan A, Ward AC, Liongue C, Lewis RS, Cheng SH et al. A novel zebrafish jak2aV581F model shared features of human JAK2V617F polycythemia vera. Exp Hematol 2009; 37: 1379–1386.

    Article  CAS  Google Scholar 

  43. Vainchenker W, Constantinescu SN . A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases. Hematol Am Soc Hematol Educ Program 2005; 126: 195–200.

    Article  Google Scholar 

  44. Bellucci S, Michiels J . The role of JAK2 V617F mutation, spontaneous erythropoiesis and megakaryocytopoiesis, hypersensitive platelets, activated leukocytes, and endothelial cells in the etiology of thrombotic manifestations in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost 2006; 32: 381–398.

    Article  CAS  Google Scholar 

  45. Williams CM, Poole AW . Using zebrafish (Danio rerio to assess gene function in thrombus formation. Methods Mol Biol 2012; 788: 305–319.

    Article  CAS  Google Scholar 

  46. Svoboda O, Stachura DL, Macho Ova O, Pajer P, Brynda J, Zon LI et al. Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 2014; 124: 220–228.

    Article  CAS  Google Scholar 

  47. Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D . Identification and characterization of zebrafish thrombocytes. Br J Haematol 1999; 107: 731–738.

    Article  CAS  Google Scholar 

  48. Peeters K, Stassen J, Collen D, Van Geet C, Freson K . Emerging treatments for thrombocytopenia: increasing platelet production. Drug Discov Today 2008; 13: 798–806.

    Article  CAS  Google Scholar 

  49. Roberts IA, Murray NA . Thrombocytopenia in the newborn. Curr Opin Pediatr 2003; 15: 17–23.

    Article  Google Scholar 

  50. Ballmaier M, Germeshausen M, Krukemeier S, Welte K . Thrombopoietin is essential for the maintenance of normal hematopoiesis in humans. Ann NY Acad Sci 2003; 996: 17–25.

    Article  CAS  Google Scholar 

  51. Narazaki M, Witthuhn BA, Yoshida K, Silvennoinen O, Yasukawa K, Ihle JN et al. Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gp130. Proc Natl Acad Sci USA 1994; 91: 2285–2289.

    Article  CAS  Google Scholar 

  52. Jenkins BJ, Quilici C, Roberts AW, Grail D, Dunn AR, Ernst M . Hematopoietic abnormalities in mice deficient in gp130-mediated STAT signaling. Exp Hematol 2002; 30: 1248–1256.

    Article  CAS  Google Scholar 

  53. Yang YC, Yin T . Interleukin (IL)-11-mediated signal transduction. Ann NY Acad Sci 1995; 762: 31–40, 40-41.

    Article  CAS  Google Scholar 

  54. Carver-Moore K, Broxmeyer HE, Luoh SM, Cooper S, Peng J, Burstein SA et al. Low levels of erythroid and myeloid progenitors in thrombopoietin- and c-mpl-deficient mice. Blood 1996; 88: 803–808.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Koichi Kawakami and Dr Bo Zhang for providing pTol vector and TALEN reagents and protocol, and thank Dr Yu Zhang (Merck Millipore) for FACS using an imaging flow cytometry. This work was supported by the Talent Recruitment funding and Excellent Young Teacher funding (Yq2013025) of Guangdong Higher Education Institutes, Peal River S&T Nova Program of Guangzhou (2013J2200032) and Team Program of Guangdong Natural Science Foundation (2014A030312002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Zhang, Y., Zhou, R. et al. Establishment of a congenital amegakaryocytic thrombocytopenia model and a thrombocyte–specific reporter line in zebrafish. Leukemia 31, 1206–1216 (2017). https://doi.org/10.1038/leu.2016.320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.320

This article is cited by

Search

Quick links