Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

Dnmt3a regulates myeloproliferation and liver-specific expansion of hematopoietic stem and progenitor cells

Abstract

DNA methyltransferase 3A (DNMT3A) mutations are observed in myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Transplantation studies have elucidated an important role for Dnmt3a in stem cell self-renewal and in myeloid differentiation. Here, we investigated the impact of conditional hematopoietic Dnmt3a loss on disease phenotype in primary mice. Mx1-Cre-mediated Dnmt3a ablation led to the development of a lethal, fully penetrant MPN with myelodysplasia (MDS/MPN) characterized by peripheral cytopenias and by marked, progressive hepatomegaly. We detected expanded stem/progenitor populations in the liver of Dnmt3a-ablated mice. The MDS/MPN induced by Dnmt3a ablation was transplantable, including the marked hepatomegaly. Homing studies showed that Dnmt3a-deleted bone marrow cells preferentially migrated to the liver. Gene expression and DNA methylation analyses of progenitor cell populations identified differential regulation of hematopoietic regulatory pathways, including fetal liver hematopoiesis transcriptional programs. These data demonstrate that Dnmt3a ablation in the hematopoietic system leads to myeloid transformation in vivo, with cell-autonomous aberrant tissue tropism and marked extramedullary hematopoiesis (EMH) with liver involvement. Hence, in addition to the established role of Dnmt3a in regulating self-renewal, Dnmt3a regulates tissue tropism and limits myeloid progenitor expansion in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  PubMed  Google Scholar 

  2. Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A . DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 2011; 25: 1219–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stegelmann F, Bullinger L, Schlenk RF, Paschka P, Griesshammer M, Blersch C et al. DNMT3A mutations in myeloproliferative neoplasms. Leukemia 2011; 25: 1217–1219.

    Article  CAS  PubMed  Google Scholar 

  4. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. New Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  Google Scholar 

  6. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43: 309–315.

    Article  CAS  PubMed  Google Scholar 

  7. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. New Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  Google Scholar 

  8. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. New Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  9. Kim SJ, Zhao H, Hardikar S, Singh AK, Goodell MA, Chen T . A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood 2013; 122: 4086–4089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 2014; 25: 442–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest 2015; 125: 1857–1872.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bejar R, Levine R, Ebert BL . Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol 2011; 29: 504–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL . The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 1995; 92: 10302–10306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011; 44: 23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Celik H, Mallaney C, Kothari A, Ostrander EL, Eultgen E, Martens et al. Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation. Blood 2015; 125: 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mayle A, Yang L, Rodriguez B, Zhou T, Chang E, Curry CV et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 2015; 125: 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen S, Meletis K, Fu D, Jhaveri S, Jaenisch R . Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dynamics 2007; 236: 1663–1676.

    Article  CAS  Google Scholar 

  18. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011; 20: 11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yusuf RZ, Scadden DT . Homing of hematopoietic cells to the bone marrow. J Vis Exp 2009; (25): pii:1104.

  20. Garrett-Bakelman FE, Sheridan CK, Kacmarczyk TJ, Ishii J, Betel D, Alonso et al. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution. J Vis Exp 2015; (96): e52246.

  21. Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 2012; 8: e1002781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N . Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci USA 2009; 106: 17413–17418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF . Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood 2001; 98: 3261–3273.

    Article  CAS  PubMed  Google Scholar 

  24. Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LE . Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 2013; 13: 520–533.

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  PubMed  Google Scholar 

  26. Day BW, Stringer BW, Spanevello MD, Charmsaz S, Jamieson PR, Ensbey KS et al. ELK4 neutralization sensitizes glioblastoma to apoptosis through downregulation of the anti-apoptotic protein Mcl-1. Neurooncology 2011; 13: 1202–1212.

    CAS  Google Scholar 

  27. Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M . Cancer genetics and genomics of human FOX family genes. Cancer Lett 2013; 328: 198–206.

    Article  CAS  PubMed  Google Scholar 

  28. Lim JH . Zinc finger and BTB domain-containing protein 3 is essential for the growth of cancer cells. BMB Rep 2014; 47: 405–410.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Laurenti E, Wilson A, Trumpp A . Myc's other life: stem cells and beyond. Curr Opin Cell Biol 2009; 21: 844–854.

    Article  CAS  PubMed  Google Scholar 

  30. Okita K, Yamanaka S . Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr Stem Cell Res Ther 2006; 1: 103–111.

    Article  CAS  PubMed  Google Scholar 

  31. Guryanova OA, Wu Q, Cheng L, Lathia JD, Huang Z, Yang J et al. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 2011; 19: 498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Will B, Vogler TO, Bartholdy B, Garrett-Bakelman F, Mayer J, Barreyro L et al. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat Immunol 2013; 14: 437–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Golubkov VS, Prigozhina NL, Zhang Y, Stoletov K, Lewis JD, Schwartz PE et al. Protein-tyrosine pseudokinase 7 (PTK7) directs cancer cell motility and metastasis. J Biol Chem 2014; 289: 24238–24249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heit C, Jackson BC, McAndrews M, Wright MW, Thompson DC, Silverman GA et al. Update of the human and mouse SERPIN gene superfamily. Hum Genomics 2013; 7: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Worzfeld T, Offermanns S . Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov 2014; 13: 603–621.

    Article  CAS  PubMed  Google Scholar 

  36. Chambers SM, Boles NC, Lin KY, Tierney MP, Bowman TV, Bradfute SB et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 2007; 1: 578–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He S, Kim I, Lim MS, Morrison SJ . Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. Genes Dev. 2011; 25: 1613–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C, Rockova V, Sanders M, Abbas S et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 2012; 119: 5824–5831.

    Article  CAS  PubMed  Google Scholar 

  39. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA . Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 2010; 465: 793–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med 2014; 211: 245–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mirantes C, Passegue E, Pietras EM . Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp Cell Res 2014; 329: 248–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Will B, Zhou L, Vogler TO, Ben-Neriah S, Schinke C, Tamari R et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood 2012; 120: 2076–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elias HK, Schinke C, Bhattacharyya S, Will B, Verma A, Steidl U . Stem cell origin of myelodysplastic syndromes. Oncogene 2014; 33: 5139–5150.

    Article  CAS  PubMed  Google Scholar 

  44. Babovic S, Eaves CJ . Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res 2014; 329: 185–191.

    Article  CAS  PubMed  Google Scholar 

  45. Mikkola HK, Orkin SH . The journey of developing hematopoietic stem cells. Development 2006; 133: 3733–3744.

    Article  CAS  PubMed  Google Scholar 

  46. Johns JL, Christopher MM . Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet Pathol 2012; 49: 508–523.

    Article  CAS  PubMed  Google Scholar 

  47. Lee WY, Kubes P . Leukocyte adhesion in the liver: distinct adhesion paradigm from other organs. J Hepatol 2008; 48: 504–512.

    Article  CAS  PubMed  Google Scholar 

  48. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503–43508.

    Article  CAS  PubMed  Google Scholar 

  49. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hogart A, Lichtenberg J, Ajay SS, Anderson S, NIH Intramural Sequencing Center, Margulies EH et al. Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites. Genome Res 2012; 22: 1407–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20: 1123–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NCI K99 grant CA178191 and by Lauri Strauss Leukemia Foundation discovery grant to OAG, by NCI K08 CA169055 and ASH-AMFDP (20121) under the partnership with The Robert Wood Johnson Foundation to FGB, by a Gabrielle’s Angel Fund grant to RLL and AMM, by grant CA172636 to RLL and AMM and by the Samuel Waxman Cancer Research Center. AMM is a Burroughs Wellcome Clinical Translational Scholar, and is supported by the Sackler Center for Biomedical and Physical Sciences. RLL is an LLS Scholar. CEM is supported by the Bert L and N Kuggie Vallee Foundation, the Irma T Hirschl and Monique Weill-Caulier Charitable Trusts, the WorldQuant Foundation, and the STARR Consortium (I7-A765, I9-A9-071). MSKCC cores are supported by grant P30 CA008748. We thank Caroline Sheridan, Tak Lee, Jorge Gandara and the WCMC Epigenomics and ABC Cores for preparation and sequencing of next-generation sequencing assays and data services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Mukherjee or R L Levine.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guryanova, O., Lieu, Y., Garrett-Bakelman, F. et al. Dnmt3a regulates myeloproliferation and liver-specific expansion of hematopoietic stem and progenitor cells. Leukemia 30, 1133–1142 (2016). https://doi.org/10.1038/leu.2015.358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.358

This article is cited by

Search

Quick links