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FOXP1 suppresses immune response signatures and MHC
class II expression in activated B-cell-like diffuse large B-cell
lymphomas
PJ Brown1,5,✠, KK Wong2,5, SL Felce1, L Lyne1, H Spearman1, EJ Soilleux1, LM Pedersen3, MB Møller4, TM Green4, DM Gascoyne1

and AH Banham1

The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here
microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major
histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-
like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short
FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen
DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (Po0.05). FOXP1 knockdown in ABC-DLBCL
cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin,
vincristine and prednisone)-treated DLBCL patients (n= 150), reduced HLA-DRA (o90% frequency) expression correlated with
inferior overall survival (P= 0.0003) and progression-free survival (P= 0.0012) and with non-GCB subtype stratified by the Hans, Choi
or Visco–Young algorithms (all Po0.01). In non-GCB DLBCL cases with o90% HLA-DRA, there was an inverse correlation with the
frequency (P= 0.0456) and intensity (P= 0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes
targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve
antigen presentation and immune surveillance in high-risk DLBCL patients.
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INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malig-
nancy that represents approximately 40% of all non-Hodgkin’s
lymphomas and displays heterogeneous clinical and molecular
characteristics. Molecular subtyping has identified a germinal
center B-cell (GCB)-like DLBCL with a more favorable outcome, a
poor prognosis activated B-cell (ABC)-like subtype and an
intermediate 'Type 3' group.1,2

DLBCL cell-of-origin (COO) groups are characterized by mostly
distinct oncogenic pathways; thus it is important to identify
predictive markers in order to enable patients to be subtyped for
personalized molecularly targeted therapy and as a useful
prognostic marker for response to standard R-CHOP therapy
(rituximab, cyclophosphamide, doxorubicin, vincristine and pre-
dnisone). One such marker is FOXP1 (forkhead box P1), a
transcription factor belonging to the forkhead box family,3 that
is involved in B-cell development.4 The FOXP1 gene maps to a
tumor-suppressor locus at 3p14.1, and although a tumor-
suppressive role for FOXP1 has been identified in certain
malignancies,5 other studies have suggested an oncogenic role
in lymphoma. One mechanism being the ability of FOXP1 to
potentiate Wnt/β-catenin signaling in DLBCL.6 For example, in an
R-CHOP-treated cohort of DLBCL cases (n= 233), higher than

average FOXP1 expression correlated with significantly inferior
overall survival (OS; P= 0.0113).7 Activation-induced short isoforms
(FOXP1S)

8 and genetic rearrangements of FOXP1 leading to
truncated FOXP1 isoforms9 may also have important biological
roles, for example, by altering or interfering with the normal
function of the full-length FOXP1 (FOXP1L) protein or by acquiring
novel functions.
FOXP1 has previously been shown to have important roles in

both B- and T-cell development.4,10 Gene expression microarray
analyses have shown that FOXP1 overexpression in striatal cells
within the central nervous system downregulates many immune-
related genes, indicating a possible role of FOXP1 as a repressor of
immune responses.11

Gene expression profiling studies have also been used to identify
other biological groupings or 'signatures' within DLBCL that may
have predictive value. The Leukemia and Lymphoma Molecular
Profiling Project identified proliferation, lymph node (host
response), germinal center differentiation and major histocompat-
ibility complex class II (MHC II) as clinically relevant pathways,2 while
others have identified DLBCL with oxidative phosphorylation, B-cell
receptor/proliferation or host response signatures.12

Previous studies have demonstrated that low tumor MHC II
levels are associated with shorter survival; for example, in a
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uniformly treated series of 82 patients human leukocyte antigen
DR alpha chain (HLA-DR)-positive DLBCL had a median OS of 16.2
years, while HLA-DR-negative patients had a much lower median
OS of 4.2 years.13 Low levels of MHC II expression in DLBCL are
proposed to reduce antigen presentation and thus facilitate tumor
immune evasion,14 leading to decreased patient survival.15

Supporting data include a recent study using flow cytometry
analysis of tumor-infiltrating lymphocytes in DLBCL that identified
differences in the CD4/CD8 T-cell ratio on loss of HLA-DR.16 Low
MHC II expression has also been associated with plasmacytic
differentiation and ABC-DLBCL.17

The expression of MHC II molecules is dependent on DNA-
binding factors, the NF-Y complex, CREB and the RFX complex,
which recruit the non-DNA-binding class II MHC transactivator
(CIITA) protein.18 CIITA is the master regulator of MHC II
transcription, acting as a transcriptional coactivator of MHC II
through formation and stabilization of an ‘enhanceosome’ with
RFX and NF-Y transcription factors, as well as recruitment of
histone acetyltransferases to alter chromatin accessibility.19,20 The
‘enhanceosome’ complex not only acts on promoters of classical
and non-classical MHC II genes but also on the promoters of
additional genes involved in antigen presentation such as the
invariant chain (CD74).21

Loss of MHC II expression in immune-privileged (IP) DLBCL
subsets occurs through deletions of the MHC II locus, while
chromosomal translocations resulting in CIITA gene fusions in
Hodgkin lymphoma cell lines lead to downregulation of MHC II
molecules on the cell surface.22 However, no similar common
genetic alterations have been found in MHC II genes or CIITA in
non-IP DLBCL cases and cell lines to date.23–25 The mechanism of
MHC II downregulation in most DLBCL is currently unknown but
may involve a regulatory factor that coordinates MHC class II
signature genes as MHC II and associated genes (for example,
CD74) are localized on different chromosomes, yet both show
reduced expression in DLBCL.26

In this study, we have identified a novel relationship between
FOXP1 and genes regulated by the CIITA complex, through
microarray analyses of FOXP1-silenced DLBCL lines. We have also
shown that FOXP1 silencing can lead to an increase in surface MHC
II and CD74 in ABC-DLBCL. Furthermore, significant inverse relation-
ships between MHC II molecules and FOXP1 at both the transcript
and protein levels have been identified in primary DLBCL samples.

PATIENTS AND METHODS
Patient samples and cell lines
Reactive tonsils were provided by the John Radcliffe Hospital (Oxford, UK).
DLBCL tissue microarrays comprising duplicate 1.0-mm cores from a series
of patients uniformly treated in Denmark with R-CHOP with curative intent
(n=160) are as previously described.7,27 Table 1 lists clinical characteristics
of all patients according to HLA-DRA expression. Informed consent was
obtained from all patients in accordance with the Declaration of Helsinki,
and local ethical approval was obtained from the Research Ethics
Committee South Central—Oxford B (CO2.162). DLBCL cell lines were
sourced and maintained as described previously; they are regularly
immunophenotyped and shown to be mycoplasma free.8

FOXP1 silencing by siRNA
FOXP1 expression was silenced in DLBCL cell lines by Nucleofection
program X-001 in an Amaxa Nucleofector II Device (Lonza, Slough, UK).
Briefly, 2x106 cells were electroporated in Solution L supplemented with
1μM FOXP1-targeting HSS178308 (siFOXP1 #1) or HSS178309 (siFOXP1 #2)
Stealth RNAi (Invitrogen, Carlsbad, CA, USA), or negative control siRNA
duplex (Stealth RNAi Low GC, Invitrogen), and harvested after 48 h for
western blotting and quantitative reverse-transcription PCR (qRT-PCR)
analysis. Three independent experiments were performed for samples
analyzed by microarray. For immune molecule fluorescence-activated cell
sorting studies, OCI-Ly3 cells were subjected to consecutive rounds of
silencing at 0 and 72 h, with flow cytometric analysis taking place at 144 h.

Microarray hybridization for identification of FOXP1-regulated
genes
Triplicate-paired FOXP1 siRNA-treated and control siRNA-treated total RNA
samples were hybridized to human whole-genome expression microarrays
using a two-color system (Agilent Microarray Design Id:014850; Agilent
Technologies LDA UK Limited, Stockport, Cheshire, UK). Arrays were
scanned using Feature Extraction (Agilent, version 10.5.1.1, Agilent
Technologies LDA UK Limited), which applied intra-array linear and loess
normalizations. Processed slide image data were imported to GeneSpring
GX (Agilent, version 11.5, Agilent Technologies LDA UK Limited) where
data derived from 41 078 probes were log2-transformed and normalized
for downstream analysis. The gene expression microarray data have been
deposited in the NCBI Gene Expression Omnibus database with accession
number GSE71526.

Microarray data analysis
To identify genes showing differential expression within cell lines and
between subtypes, t-tests and analysis of variance were used. Significance

Table 1. Clinicopathological characteristics of DLBCL patients
stratified according to HLA-DRA expression

Characteristics All cases
(n=150)a

HLA-
DRAo90%
(n=38)

HLA-
DRA⩾ 90%
(n= 112)

P-value

Age (years) 0.2574
Median 67 70 66
Range 20–91 32–87 20–91

Sex 0.6338
Female (%) 70 (47) 19 (13) 51 (34)
Male (%) 80 (53) 19 (13) 61 (40)

Stage 0.0376
I–II (%) 81 (54) 15 (10) 66 (44)
III–IV (%) 69 (46) 23 (15) 46 (31)

Performance status 0.3634
0–1 (%) 129 (86) 31 (21) 98 (65)
⩾ 2 (%) 21 (14) 7 (5) 14 (9)

LDH 0.0123
⩽ULN (%) 89 (59) 16 (11) 73 (48)
4ULN (%) 61 (41) 22 (15) 39 (26)

Extranodal sites 0.6375
0–1 (%) 126 (84) 31 (21) 95 (63)
⩾ 2 (%) 24 (16) 7 (5) 17 (11)

IPI 0.5120
0–2 (%) 89 (59) 25 (17) 80 (53)
3–5 (%) 61 (41) 13 (9) 32 (21)

COO (Hans) 0.0016
GCB (%) 88 (59) 14 (9) 74 (50)
Non-GCB (%) 62 (41) 24 (16) 38 (25)

COO (Choi; n = 147)a 0.0135
GCB (%) 94 (64) 18 (12) 76 (52)
Non-GCB (%) 53 (36) 20 (14) 33 (22)

COO (Visco–Young; n = 148)b 0.0088
GCB (%) 96 (65) 18 (12) 78 (53)
Non-GCB (%) 52 (35) 20 (13) 32 (22)

Abbreviations: COO, cell-of-origin; DLBCL, diffuse large B-cell lymphoma;
GCB, germinal center B-cell; HLA-DRA, human leukocyte antigen DR alpha
chain; IPI, International Prognostic Index; LDH, lactate dehydrogenase;
ULN, upper limit of normal. aThree cases (of 150) could not be classified for
COO according to Choi algorithm. bTwo cases (of 150) could not be
classified for COO according to Visco–Young algorithm.
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was determined using a P-value of o0.05 after multiple testing correction
(Benjamini–Hochberg) and log2 ratio of minimum ±0.5 (1.41-fold change).
To identify common biological themes within siFOXP1-treated cell lines,
Gene Ontology (GO) enrichment analysis was conducted on lists of
differentially expressed genes (Supplementary Methods).

qRT-PCR and western blotting
Methods for qRT-PCR and western blotting experiments have been
described previously.28 Details of TaqMan probes and gene expression
quantification are described in Supplementary Methods, antibodies used
for western blotting are shown in Supplementary Table S3.

Flow cytometry for immune cell surface markers
After FOXP1 or control siRNA treatment (144 h), OCI-Ly3 cells were
incubated with anti-HLA-DRA-PE (12-9956-42, eBioscience, San Diego, CA,
USA) or anti-CD74-PE (12-0748-42, eBioscience) or isotype control
antibodies diluted 1:200 in phosphate-buffered saline/0.5% bovine serum
albumin/2mM EDTA. After a wash with phosphate-buffered saline and
fixation in 1% formaldehyde, flow cytometric analysis was performed using
the FACSCalibur (Becton Dickinson, San Jose, CA, USA) and FlowJo
software (Treestar, San Carlos, CA, USA).

Data-mining from published microarray data sets
The Lenz microarray data set29 comprising gene expression profiling data
for 414 DLBCL tumors was obtained from Gene Expression Omnibus
(accession number: GSE10846). Further details are provided in
Supplementary Methods.

Immunohistochemistry (IHC)
IHC labeling of DLBCL tissue microarrays for FOXP1, HIP1R and COO
markers has been described previously.7 Staining for HLA-DRA expression,
using 1:50 dilution of mouse monoclonal clone LN-3 (Leica Biosystems Ltd,
Newcastle Upon Tyne, UK) was performed after dewaxing and heat-
mediated antigen retrieval in 50mM Tris/2mM EDTA pH9.0, using an
EnVision Kit according to the manufacturer’s instructions (DakoCytoma-
tion, Glostrup, Denmark). HLA-DRA expression was independently scored
by AHB/LL/EJS, who were blinded to patient outcome and clinical
characteristics. A qualitative score was generated where 3 = strong staining
of comparable intensity to normal lymphocytes in tonsil controls (which
exhibited homogeneously strong membrane staining) and 2=moderate,
1 =weak and 0=no labeling (tumors were only scored as negative when
internal controls were positive). A quantitative score was generated for
tumor cell positivity in 10% increments. Previous studies of HLA-DR
expression in lymphomas selected an area of minimum intensity staining
for scoring based on the rationale that these cells are more likely to escape
immune surveillance.30 Thus lower frequency and intensity values were
selected where there was a discrepancy between duplicate cores. DLBCL
from immune-privileged sites commonly show loss of MHC II expression as
a result of locus deletions.31,32 As our aim was to investigate FOXP1 as a
potential regulator of HLA-DRA expression, we excluded the eight
testicular DLBCL from our analyses.

Chromatin immunoprecipitation (ChIP)
Formaldehyde cross-linked chromatin was prepared from 1× 107 cells from
each DLBCL cell line, and ChIP was performed using anti-FOXP1 and
control antibodies (Supplementary Table S3) as previously described.7

Precipitated DNA samples were analyzed by 30 cycles of PCR amplification
with specific primers (Supplementary Table S5) using GoTaq DNA
polymerase (Promega, Madison, CA, USA). A total of 15% input sample
was amplified as a positive control for each cell line and primer set.

Statistical analysis
Continuous and categorical variables were compared using Mann–Whitney
U and chi-square tests, respectively, while correlation coefficients were
estimated using Pearson correlation (GraphPad Prism v6.05; La Jolla, CA,
USA). Kaplan–Meier method was used for survival analyses, which were
compared using log-rank test. Multivariate analysis was performed using
Cox proportional hazards model (SPSS Statistics v22; Chicago, IL, USA).
A two-sided P-value of o0.05 determined statistical significance in all
analyses.

RESULTS
FOXP1 depletion from DLBCL cell lines
GCB-DLBCL lines commonly express little FOXP1 protein, but
when strongly expressed it is predominantly FOXP1L, while
ABC-DLBCL are generally FOXP1+ and express detectable FOXP1L
but mostly FOXP1S.

8 To assess whether FOXP1S has a distinct role
in ABC-DLBCL, knockdown of total FOXP1 expression was
performed using two validated FOXP1-targeting siRNAs
(Supplementary Figure S1) in two FOXP1+ GCB-DLBCL lines (DB
and Karpas 422) and two ABC-DLBCL lines (HBL-1 and OCI-Ly3).
After 48 h, FOXP1 proteins were efficiently depleted from these
cell lines.

Gene expression profiling and validation of FOXP1 target genes
RNAs prepared from samples with validated FOXP1 silencing after
48 h were hybridized to Agilent human whole-genome expression
microarrays, with each FOXP1 siRNA being compared with a non-
targeting siRNA control. The two siRNAs used for targeting FOXP1
gave statistically reproducible results in each DLBCL cell line
(Supplementary Figure S2). A comparison of individual FOXP1-
repressed genes and FOXP1-induced genes (for example, genes
induced or repressed, respectively, on FOXP1 silencing) with at
least a twofold differential expression revealed few common
targets across DLBCL lines, highlighting the difference between
the two DLBCL subtypes (Figure 1a). Across all the four cell lines,
there were no genes commonly repressed more than twofold by
FOXP1, while 47 genes were commonly activated by FOXP1.
Within the FOXP1-induced gene set, 76 of the 91 (84%) genes
regulated in both ABC-DLBCL lines were also present in at least
one other GCB-DLBCL line. In contrast, only 5 of the 31 (16%)
genes within the FOXP1-repressed gene set in ABC-DLBCL lines
were also present in another GCB-DLBCL line. Thus FOXP1-
dependent activation appears conserved in both GCB- and ABC-
DLBCL cells, while GCB/ABC-specific functions rendered by FOXP1
are likely achieved through repression of gene expression.
Several genes displaying greatest fold changes were selected

for validation by qRT-PCR within the same samples used for the
microarray analysis (Supplementary Figure S3) and in an
independent sample set including four additional GCB- and
ABC-DLBCL lines (Figure 1b). A subset of genes previously
associated with FOXP1 in primary DLBCL through correlation with
COO classification (LPP,33 NEIL134 and VNN233) were shown to be
direct targets of FOXP1 by ChIP in one or more DLBCL lines
(Figure 1c). However, where FOXP1 did not appear to bind the
gene directly, despite regulating transcript expression (for
example, LPP in K422 cells), it is possible that FOXP1 may act
indirectly or via additional binding sites as only five promoter
regions (with the highest numbers of FOXP consensus sites) were
tested for each target. There are several clear differences in
FOXP1-dependent activity between ABC- and GCB-DLBCL cells; for
example, CHAC1 expression was upregulated in GCB-DLBCL lines
but downregulated in a subset of ABC-DLBCL. The analysis of
individual FOXP1 target genes validated that the microarray data
were reproducible with an independent technique, that the genes
were regulated in an extended DLBCL cell line panel and that the
data set contained direct FOXP1 targets.

Comparison of biological processes associated with FOXP1
regulation in DLBCL cell lines
Studies involving B-cell receptor signaling and nuclear factor-κB
pathway mutations show that multiple genes can be targeted to
deregulate the activity of a pathway or biological process and that
individual tumors achieve this in various ways.35–37 Thus further
analyses were performed to identify biological processes asso-
ciated with FOXP1 target genes that may be regulated by FOXP1
and their conservation or variation between DLBCL subtypes.
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To identify FOXP1-regulated biological processes in GCB- and
ABC-DLCBL cell lines, we applied GO enrichment analysis to
FOXP1-repressed or FOXP1-induced gene sets with a fold change
cutoff of ± 1.41 (corresponding to ± 0.5 on log2 scale), comparable
to other studies.38 Genes commonly regulated by FOXP1 in GCB-
or ABC-DLBCL cells were derived from several distinct biological
processes (Figure 2). GO terms (false discovery rate o0.05)
enriched in both DB and Karpas 422 (that is, specific for GCB-

DLBCL) or both OCI-Ly3 and HBL-1 (that is, specific for ABC-DLBCL)
were identified (Supplementary Table S1). GO terms enriched only
in a single-cell line were excluded from further analyses as our aim
was to identify common or subtype-specific rather than cell line-
specific FOXP1 functions.
In the FOXP1-repressed gene sets, ABC-DLBCL cells showed

enrichment of immune-related GO terms, including MHC II
molecules, regulation of immune responses and leukocyte activation
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Figure 1. FOXP1 depletion and microarray target gene validation in GCB- and ABC-DLBCL cell lines. (a) Venn diagram of the number of genes
with ⩾ 2-fold repression or induction after 48 h FOXP1 silencing in four DLBCL lines. (b) qRT-PCR validation of target gene regulation in an
extended panel of FOXP1-silenced DLBCL lines (DB, K422 (Karpas 422), MIEU, SUDHL4, OCI-Ly3, HBL-1, RIVA and U2932), n= 3 biological
replicates. (c) ChIP assays of FOXP1 binding to CHAC1, LPP, NEIL1 and VNN2 promoter sequences. Anti-FOXP1 antibodies used are as follows: ms
Ab, mouse JC12; rb Ab, rabbit Ab16645 (Abcam).
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(Figure 2a). Gene expression microarray analysis of FOXP1-
overexpressing human B cells has produced similar findings
showing regulation of the immune response and leukocyte
activation signatures,39 and thus FOXP1 appears to be a broad
controller of multiple B-cell:T-cell interaction molecules in both
normal and malignant B cells.4,10 FOXP1-dependent targets in GCB-
DLBCL cell lines exhibited enrichment for distinct GO terms related
to neuron components and regulation of metabolic processes.

Within FOXP1-induced gene sets, both GCB- and ABC-DLBCL
cell lines showed enrichment of GO terms pertaining to cell
movement (Figure 2b), suggesting a common function of FOXP1
in activating migration. These observations are consistent with the
Venn diagrams described earlier (Figure 1a) in which a higher
proportion of genes shared by GCB- and ABC-DLBCL cell lines was
found in FOXP1-induced gene sets but not in the FOXP1-
repressed gene sets.

0 1 2 3 4 5 6 7 8 9 10 11
-log10 FDR

9.98 x 10-11

0.0016
1.64 x 10-8

7.21 x 10-5

2.94 x 10-9

4.09 x 10-8

5.00 x 10-7

7.60 x 10-6

5.14 x 10-8

1.45 x 10-5

4.47 x 10-5

0.0002
0.0002

1.94 x 10-6

1.94 x 10-6
0.0006

0.0080
0.0022

0.0027
0.0080

0.0421
0.0005

0.0003
0.0444

OCI-Ly3
HBL-1
DB 
K422 

MHC protein complex 

Immune response 

Pos. reg. of immune 
system process 

Leukocyte activation 

T cell activation 

Neuron projection 

Neuron part 

Neg. reg. of macromole- 
cule metabolic process 

Neg. reg. of 
metabolic process 

Reg. of apoptotic 
process 

Reg. of programmed 
cell death 

MHC II protein complex 

A
B

C
-D

LB
C

L 
 

ce
ll 

lin
es

 
G

C
B

-D
LB

C
L 

 
ce

ll 
lin

es
 

GO terms induced by FOXP1 

GO terms repressed by FOXP1 

0 1 2 3 4 5 6 7 8 9 10 11
-log10 FDR

0.0007
0.0395

0.0034
0.0253

2.90 x 10-5

0.0002

7.27 x 10-10

2.82 x 10-5

N/A

N/A
N/A

N/A

3.06 x 10-7

0.0026

0.0028
0.0002

1.97 x 10-6

0.0016

0.0052
0.0002

1.68 x 10-5

0.0002

0.0002
1.85 x 10-5

OCI-Ly3
HBL-1
DB 
K422 

Cell chemotaxis 

Ion homeostasis 

Cellular ion 
homeostasis 

Chromosome 

Nucleosome assembly 

Ion transport 
Reg. of ion trans- 

membrane transport 

Neurogenesis 

Chemotaxis 

Locomotion 

Locomotion 

A
B

C
-D

LB
C

L 
 

ce
ll 

lin
es

 
G

C
B

-D
LB

C
L 

 
ce

ll 
lin

es
 

Synaptic transmission 

Figure 2. GO enrichment analysis of the biological processes influenced by FOXP1 silencing in GCB- and ABC-DLBCL cells. (a) GO terms
enriched in FOXP1-repressed gene sets (that is, genes upregulated by FOXP1 depletion). GO terms significantly enriched in ABC-DLBCL, but
not in GCB-DLBCL, cells include MHC II complexes, regulation of immune responses and leukocyte activation. (b) GO terms enriched in FOXP1-
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FOXP1 silencing in ABC-DLBCL cells upregulates MHC II expression
MHC II genes were not individually among the most highly
upregulated on FOXP1 silencing but were frequently repressed by
FOXP1 in the ABC-DLBCL cell lines along with the non-MHC CIITA
target gene CD74 and CIITA itself (Figure 3a). For example, in OCI-
Ly3, 13 of the 18 (72%) MHC II transcripts were upregulated
41.41-fold on FOXP1 silencing, with 7 of the 18 (39%) being
regulated in HBL-1. No MHC II genes were upregulated
significantly in DB or Karpas 422 lines. To obtain a global view
of transcript expression, we visualized the expression levels of
selected MHC II genes against a background of 41 000 probes
(excluding control probes) present on the microarray on scatter
plots. None of the MHC II genes or the known direct FOXP1 target
HIP1R were significantly upregulated in both GCB-DLBCL lines
(Figure 3b), whereas HIP1R and five CIITA-regulated genes (CD74,
HLA-DQB1, HLA-DQB2, HLA-DOA, HLA-DMA) were significantly
upregulated in both FOXP1-depleted OCI-Ly3 and HBL-1 lines.
The established contribution of MHC II downregulation to poor
clinical outcomes and its correlation with the ABC-DLBCL subtype
in primary DLBCL led us to further explore their relationship with
FOXP1.13,17

To validate the effect of FOXP1 depletion on MHC II expression
at the protein level, flow cytometric analysis was performed on
FOXP1-depleted OCI-Ly3 (Figure 4a). The surface levels of CD74
and HLA-DRA (the most abundant MHC II protein) were
upregulated in both siFOXP1 #1- and #2-treated OCI-Ly3
compared with the control siRNA-treated cells. Supplementary
Figure S4 illustrates similar data from additional ABC-DLBCL cell
lines and downregulation of CD74 and HLA-DRA on FOXP1
silencing in the GCB-DLBCL cell line Karpas 422.

FOXP1 was inversely correlated with the antigen processing and
presentation pathway and individual MHC II transcripts in primary
DLBCL
Gene Set Enrichment Analysis identified a significant inverse
correlation between 'antigen processing and presentation' signa-
ture (entry no. hsa04612; KEGG database) and four independent
FOXP1 probes in a primary DLBCL microarray data set (n= 414;
GSE10846: Figure 4b).29 MHC II genes contributing to the core
enrichment of the gene set on a negative scale, in all four FOXP1
probes, included HLA-DRA, HLA-DMB, HLA-DQB1, HLA-DPA1, HLA-
DPB1 and HLA-DRB1 (Supplementary Table S2). The relationship
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Enrichment plots of antigen processing and presentation targets  
with FOXP1 probes in primary DLBCL cases (n=414; GSE10846)
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Figure 4. FOXP1 silencing increases HLA-DRA expression in ABC-DLBCL while FOXP1 transcripts are inversely correlated with antigen
processing/presentation and with individual MHC II genes in primary DLBCL. (a) Knockdown of FOXP1 in OCI-Ly3 cells increased HLA-DRA and
CD74 protein expression on the cell surface. Flow cytometry plots shown are representative of three independent experiments. (b) Gene Set
Enrichment Analysis of primary DLBCL cases (n= 414; GSE10846) for gene sets associated with FOXP1 transcript expression; the 'antigen
processing and presentation' signature was significantly enriched according to four independent FOXP1 probes (Po0.05; false discovery rate
o0.25). (c) Significant (Po0.05) inverse correlations between FOXP1 (223287_s_at) and selected MHC II transcripts (HLA-DRA, 210982_s_at;
HLA-DMB, 217478_s_at and HLA-DQB1, 212999_x_at) in primary ABC-DLBCL (n= 167) and GCB-DLBCL (n= 183) cases derived from data set
GSE10846.
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between FOXP1 and individual MHC II genes was further evaluated
within GCB (n= 183) or ABC (n= 167) molecularly defined DLBCL
subtypes: FOXP1 displayed significant inverse relationships
(ro − 0.15; Po0.05) with HLA-DRA, HLA-DMB and HLA-DQB1 in
both DLBCL subtypes (Figure 4c). Thus, in contrast to our in vitro
studies with pure lymphoma cell populations, primary DLBCL
biopsies containing the tumor cells and their microenvironment
exhibit a relationship between MHC II and FOXP1 gene expression
independently of COO subtype. A differential relationship
between FOXP1 transcripts and FOXP1 proteins in GCB- and
ABC-DLBCL cells could also explain this phenomenon.

Analysis of HLA-DRA protein expression in primary DLBCL
We therefore specifically studied the relationship between FOXP1
and MHC II molecules and DLBCL subtype at the protein level in
primary DLBCL using IHC. HLA-DRA was selected for further
studies as it is the most highly expressed MHC II protein, there is a
commercially available paraffin reactive monoclonal antibody
(clone LN-3) and HLA-DRA has been previously demonstrated to
have clinical relevance at both the transcript and protein level in
CHOP-treated DLBCL.13,17,40–42

As there was no previously reported clinically relevant IHC
cutoff for HLA-DRA expression in R-CHOP-treated patients, both
the intensity and frequency of HLA-DRA expression were initially
assessed. A number of DLBCL exhibited reciprocal patterns of
FOXP1 and HLA-DRA expression (Figure 5a). COO subtyping was

previously demonstrated to be clinically relevant in this series,7

and the frequency of HLA-DRA expression was significantly lower
in non-GCB DLBCL subtyped using either the Hans,43 Choi44 or
Visco–Young45 IHC algorithms (all Po0.01; Figure 5b).
HLA-DRA expression was evaluable for 150/152 tissue micro-

array cases (98.7%). Quantitative frequency expression data were
primarily used to investigate the clinical relevance of HLA-DRA
expression as the qualitative intensity of expression was found to
be less clinically relevant in initial tests (Figure 6). Testing different
frequency cutoff scores indicated that cutoffs of 80% or 90% were
most clinically relevant in terms of patients’ outcome. It was
observed that more non-GCB DLBCL than GCB-DLBCL exhibited a
score of 80% HLA-DRA positivity (Figure 5b), therefore the cutoff
for HLA-DRA expression was set at ⩾ 90% to capture this
difference between the COO subtypes and its better prediction
of progression-free survival (PFS).

Reduced frequency HLA-DRA expression was significantly
associated with markers of high-risk disease and poor outcome
HLA-DRA expression levels were independent of patients’ age, sex,
performance status, the number of extranodal sites and the
International Prognostic Index (IPI) (Table 1). Reduced HLA-DRA
frequency of expression (o90%) correlated with several indica-
tors of high-risk disease, including elevated lactate dehydrogenase
(P= 0.0123), higher stage (P= 0.0376) and a non-GCB phenotype
(Hans, P= 0.0016; Choi, P= 0.0135; Visco–Young, P= 0.0088).
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Consistent with these findings, patients with reduced HLA-DRA
expression (o90%) were found to have significantly worse OS
(P= 0.0003), and PFS (P= 0.0012) (Figure 5c), corresponding to 5-
year OS rates of 72% versus 38% and 5-year PFS rates of 63%
versus 36%. Patients with reduced intensity HLA-DRA expression
also exhibited poor OS (P= 0.0091) and PFS (P= 0.0103)
(Supplementary Figure S5A), although this was less significant
than the quantitative score.

Reduced frequency HLA-DRA expression identified patients with
inferior outcome in low-risk IPI and COO subgroups
Reduced frequency of HLA-DRA expression identified a subgroup
(23.8%) of high-risk patients in the low-risk IPI group (score 0–2:
P= 0.0008; Supplementary Figure S5B) and in the low-risk GCB
subgroups (Hans (15.9%), P= 0.0089; Choi (19.1%), P= 0.0028;
Visco–Young (18.8%), P= 0.0084; Supplementary Figure S6),
irrespective of the subtyping algorithm used. No significant
differences were observed within the high-risk IPI group or the
non-GCB DLBCL subgroup, although there was a trend toward
lower expression and worse outcome (Supplementary Figures S5B
and S6). In multivariate analyses, the association of reduced
(o90%) HLA-DRA expression with poor OS and PFS remained
significant, being independent of a high IPI score and non-GCB
phenotype (Table 2).

The reciprocal expression of FOXP1 and its direct target HIP1R are
associated with HLA-DRA in primary DLBCL
There was significantly higher-intensity HLA-DRA protein expres-
sion in patients whose tumors lacked FOXP1 expression

(P= 0.0373) or showed only weak FOXP1 expression (P= 0.0359)
than in those with strong FOXP1 expression (Figure 6a). No
significant correlation between the frequency of FOXP1 and HLA-
DRA expression was observed (P= 0.2248; Supplementary Figure
S7A). However, among DLBCL with reduced HLA-DRA expression
(o90%) there was a reciprocal relationship between both their
frequency (P= 0.0456) and intensity (P= 0.0349) in the non-GCB
subtype (Figure 6b and Supplementary Figure S7B), which was not
observed in GCB-DLBCL (Supplementary Figure S7C). There was a
significant positive relationship between the frequency of expres-
sion of HLA-DRA and a direct FOXP1 target, HIP1R (P= 0.0008),
although not with their intensity (Supplementary Figure S7D). We
previously demonstrated that reciprocal frequency expression of
FOXP1 (⩾70%) and HIP1R (⩽10%), the FOXP1hiHIP1Rlo phenotype,
in this DLBCL series was more clinically relevant than either marker
alone and hypothesized that this might represent a preferential
measure of FOXP1S transcriptional activity.

7 Interestingly, patients
with reciprocal patterns of FOXP1 and HIP1R expression exhibited
significantly reduced intensity (P= 0.0405) and frequency
(P= 0.0300) of HLA-DRA expression (Figure 6c).

DISCUSSION
Here we compare the patterns of gene expression regulated by
FOXP1L in GCB-DLBCL and predominantly FOXP1S expressed in
ABC-DLBCL. Differences between FOXP1 targets in DLBCL
molecular subtypes suggest that distinct FOXP1 isoforms in
combination with their different genetic backgrounds generate
significant functional differences. The analysis of individual FOXP1
target genes identifies several direct targets, in addition to HIP1R,7
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whose expression contributes to the GCB-DLBCL COO signature,
including LPP,33 VNN233 and NEIL1.34 This is consistent with data
from Sagardoy et al.46 demonstrating that FOXP1 regulates genes
involved in the GC reaction and that downregulation of FOXP1 is
required for GCB function.
Although microarray analysis and ChIP-sequencing previously

identified FOXP1 as a transcriptional repressor of immune
signaling in the central nervous system,11 our study is the first
to identify FOXP1 as a regulator of MHC II expression. Gene
expression profiling studies in primary DLBCL identified an MHC
class II gene expression signature conferring a favorable prognosis
in CHOP-treated patients.47 This was presumed to be a
consequence of effective presentation of tumor antigens to the
immune system, as lower numbers of CD8+ tumor-infiltrating
lymphocytes were previously observed in sporadic DLBCL that
had lost one or more class I or class II HLA proteins48 and
subsequently in those with low MHC II transcript and protein
expression.41 Several studies have demonstrated a relationship
between loss of MHC II expression in chemotherapy-treated
DLBCL and poor outcome.13,17,40–42 However, other studies have
found no relationship between HLA-DRA expression and clinical
outcome.49,50

There have been few studies of the clinical relevance of HLA-
DRA in the post-rituximab era. However, low transcript levels of
HLA-DRB and HLA-DQA1 (o20%) and high levels of MYC (480%),
determined using a quantitative nuclease-protection assay, were
predictors of poor prognosis in 116 R-CHOP-treated DLBCL.51

Interestingly, FOXP1 may functionally link these two observations,
as repression of microRNA-34a by MYC has been reported to
enable high-level FOXP1 protein expression,52 which may then
functionally repress MHC II transcription. HLA-DRA expression
(41% cutoff for positive versus negative), assessed using the
DAKO M0746 antibody, did not predict outcome in either CHOP or
R-CHOP cohorts from the large German RICOVER-60 trial.53 The
Lunenburg Lymphoma Biomarker Consortium found HLA-DR
expression, scored as negative versus positive, predicted OS in
one of their two CHOP-treated cohorts and not in CHOP-treated
patients who had received rituximab.54 In addition, a recent flow
cytometry study of a small series of 36 Japanese patients reported
that DLBCL patients with 'not bright' HLA-DR staining had a poor
prognosis.55

In the current series of 150 homogeneously R-CHOP-treated de
novo DLBCL patients, reduced frequency of HLA-DRA protein
expression predicted both poor OS and PFS. Previous studies have
tended to compare tumors with complete loss of HLA-DRA
expression or those with the lowest 10–20% expression (in some
studies based on MHC II transcript analyses). We elected to use a

90% cutoff to distinguish cases with reduced HLA-DRA expression
on the basis that this was the most predictive of outcome and
would identify patients where tumor cells might be capable of
escaping immune surveillance. However, ⩾ 10% frequency of
positivity cutoff in the current series was also able to significantly
predict poor OS (P= 0.035), while a ⩾ 20% cutoff predicted both
OS (P= 0.0067) and PFS (P= 0.0379).
Several components of the CIITA complex have been identified

through their contribution to loss of MHC II gene expression in
bare lymphocyte syndrome patients.56 However, the embryonic
lethality associated with Foxp1 deletion in mice57 may explain why
FOXP1 has no bare lymphocyte syndrome association. Unlike most
DLBCL, testicular lymphomas commonly display genetic deletions
of the MHC II genes. The recent identification of genetic
rearrangements of CIITA and FOXP1 in primary testicular
DLBCL58 provides independent evidence of their functional
connection. Further studies are needed to determine the
mechanism(s) by which FOXP1 regulates MHC II gene expression.
Previous studies in DLBCL have suggested that the mechanism is
not via regulation of CIITA expression but rather through an
unknown transcriptional regulator.24,26 Certainly FOXP1 silencing
in ABC-DLBCL can increase the transcription and cell-surface
expression of molecules under the transcriptional control of the
CIITA complex, such as HLA-DRA and CD74. A direct interaction
with components of the CIITA complex may be one mechanism by
which FOXP1 regulates its activity. Further studies are ongoing to
explore this possibility, and our data mining of previously
published FOXP1 ChIP-seq data39 has already confirmed that
FOXP1 can indeed occupy HLA, CIITA and CD74 promoters in
DLBCL cells, including the OCI-Ly3 cell line studied here
(Supplementary Table S6).
To the best of our knowledge, we are the first to identify FOXP1

as a novel MHC II regulator. FOXP1S expression contributes to
pathogenic MHC II downregulation in DLBCL and may also be
important for its normal role in B cells where FOXP1S is induced
during B-cell activation/maturation.9 Targeting the FOXP1 path-
way may enable the upregulation of classical and non-classical
MHC II genes to overcome tumor-immune evasion.15,59 We
propose that FOXP1 may act together with the CIITA complex to
regulate expression of MHC II genes. This may have important
implications for cancer immunotherapy and strengthens the case
for the FOXP1 pathway as both a useful biomarker and a novel
therapeutic target for restoring antigen presentation and immune
surveillance in DLBCL.
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Table 2. Multivariate analysis for OS and PFS in DLBCL patients treated with R-CHOP according to IPI, HLA-DRA expression and COO

Risk factor OS PFS

95% CI Hazard ratio P-value 95% CI Hazard ratio P-value

IPI⩾ 3 1.77–5.14 3.02 o0.0001 1.85–4.99 3.04 o0.0001
HLA-DRAo90% 1.26–3.79 2.19 0.0053 1.10–3.11 1.85 0.0207
Non-GCB phenotype (Hans algorithm) 0.93–2.75 1.60 0.0880 0.94–2.55 1.54 0.0883
IPI⩾ 3 1.68–4.98 2.89 0.0001 1.77–4.86 2.93 o0.0001
HLA-DRAo90% 1.30–3.94 2.26 0.0039 1.11–3.15 1.87 0.0193
Non-GCB phenotype (Choi algorithm) 0.99–2.96 1.72 0.0528 1.01–2.78 1.68 0.0456
IPI⩾ 3 1.75–5.18 3.01 o0.0001 1.83–5.00 3.02 o0.0001
HLA-DRAo90% 1.30–3.90 2.25 0.0039 1.11–3.14 1.87 0.0178
Non-GCB phenotype (Visco–Young algorithm) 1.20–3.56 2.07 0.0089 1.23–3.36 2.04 0.0055

Abbreviations: CI, confidence interval; COO, cell-of-origin; DLBCL, diffuse large B-cell lymphoma; GCB, germinal center B-cell; HLA, human leukocyte antigen;
IPI, International Prognostic Index; OS, overall survival; PFS, progression-free survival; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine and
prednisone. Note: IPI and low HLA-DRA expression (o90%) were analyzed separately with regards to non-GCB phenotype determined using three different
algorithms.
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