Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia

Abstract

The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3′untranslated region–microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Van Vlierberghe P, Ferrando A . The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3398–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  3. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    CAS  PubMed  Google Scholar 

  5. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  PubMed  Google Scholar 

  6. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    Article  CAS  PubMed  Google Scholar 

  7. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110: 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  8. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 2007; 39: 593–595.

    Article  CAS  PubMed  Google Scholar 

  9. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 2012; 22: 209–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med 2013; 210: 1545–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Correia NC, Durinck K, Leite AP, Ongenaert M, Rondou P, Speleman F et al. Novel TAL1 targets beyond protein-coding genes: identification of TAL1-regulated microRNAs in T-cell acute lymphoblastic leukemia. Leukemia 2013; 27: 1603–1606.

    Article  CAS  PubMed  Google Scholar 

  12. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J . Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 2003; 22: 4478–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakamoto H, Dai G, Tsujino K, Hashimoto K, Huang X, Fujimoto T et al. Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood 2006; 108: 896–903.

    Article  CAS  PubMed  Google Scholar 

  14. Badiani PA, Kioussis D, Swirsky DM, Lampert IA, Weston K . T-cell lymphomas in v-Myb transgenic mice. Oncogene 1996; 13: 2205–2212.

    CAS  PubMed  Google Scholar 

  15. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12: 372–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011; 43: 673–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Sanda T, Look AT, Novina CD, von Boehmer H . Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J Exp Med 2011; 208: 663–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jackson AL, Levin AA . Developing microRNA therapeutics: approaching the unique complexities. Nucleic Acid Ther 2012; 22: 213–225.

    Article  CAS  PubMed  Google Scholar 

  22. Taghon T, Waegemans E, Van de Walle I . Notch signaling during human T cell development. Curr Top Microbiol Immunol 2012; 360: 75–97.

    CAS  PubMed  Google Scholar 

  23. Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med 2011; 208: 653–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18 (Suppl 1): S96–104.

    Article  PubMed  Google Scholar 

  25. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    Article  CAS  PubMed  Google Scholar 

  26. Cesi V, Casciati A, Sesti F, Tanno B, Calabretta B, Raschella G . TGFbeta-induced c-Myb affects the expression of EMT-associated genes and promotes invasion of ER+ breast cancer cells. Cell Cycle 2011; 10: 4149–4161.

    Article  CAS  PubMed  Google Scholar 

  27. Imig J, Motsch N, Zhu JY, Barth S, Okoniewski M, Reineke T et al. microRNA profiling in Epstein-Barr virus-associated B-cell lymphoma. Nucleic Acids Res 2011; 39: 1880–1893.

    Article  CAS  PubMed  Google Scholar 

  28. Luo Z, Zhang L, Li Z, Li X, Li G, Yu H et al. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genomics 2012; 5: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grabher C, Payne EM, Johnston AB, Bolli N, Lechman E, Dick JE et al. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 2011; 25: 506–514.

    Article  CAS  PubMed  Google Scholar 

  30. Chung EY, Dews M, Cozma D, Yu D, Wentzel EA, Chang TC et al. c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biol Ther 2008; 7: 1758–1764.

    Article  CAS  PubMed  Google Scholar 

  31. Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D, Sarkisian MR et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med 2013; 5: 1196–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taghon T, Waegemans E, Van de Walle I . Notch signaling during human T cell development. In: Radtke F (ed). Notch Regulation of the Immune System. Springer: Berlin, Heidelberg, Germany, 2012, pp 75–97.

    Chapter  Google Scholar 

  33. Braconi C, Valeri N, Gasparini P, Huang N, Taccioli C, Nuovo G et al. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clin Cancer Res 2010; 16: 957–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Zhang X, Lentz C, Abi-Daoud M, Pare GC, Yang X et al. miR-193b regulates Mcl-1 in melanoma. Am J Pathol 2011; 179: 2162–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    Article  CAS  PubMed  Google Scholar 

  36. Beug H, von Kirchbach A, Doderlein G, Conscience JF, Graf T . Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 1979; 18: 375–390.

    Article  CAS  PubMed  Google Scholar 

  37. Gewirtz AM . Myb targeted therapeutics for the treatment of human malignancies. Oncogene 1999; 18: 3056–3062.

    Article  CAS  PubMed  Google Scholar 

  38. Amaru Calzada A, Todoerti K, Donadoni L, Pellicioli A, Tuana G, Gatta R et al. The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2(V617F) myeloproliferative neoplasm cells. Exp Hematol 2012; 40: 634–645, e610.

    Article  CAS  PubMed  Google Scholar 

  39. Chambers AE, Banerjee S, Chaplin T, Dunne J, Debernardi S, Joel SP et al. Histone acetylation-mediated regulation of genes in leukaemic cells. Eur J Cancer 2003; 39: 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  40. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng J, Guo S, Chen S, Mastriano SJ, Liu C, D'Alessio AC et al. An extensive network of TET2-targeting microRNAs regulates malignant hematopoiesis. Cell Rep 2013; 5: 471–481.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou P, Xu W, Peng X, Luo Z, Xing Q, Chen X et al. Large-scale screens of miRNA-mRNA interactions unveiled that the 3'UTR of a gene is targeted by multiple miRNAs. PLoS One 2013; 8: e68204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramsay RG, Gonda TJ . MYB function in normal and cancer cells. Nat Rev Cancer 2008; 8: 523–534.

    Article  CAS  PubMed  Google Scholar 

  44. Bender TP, Kremer CS, Kraus M, Buch T, Rajewsky K . Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol 2004; 5: 721–729.

    Article  CAS  PubMed  Google Scholar 

  45. Allen RD 3rd, Bender TP, Siu G . c-Myb is essential for early T cell development. Genes Dev 1999; 13: 1073–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 2005; 201: 1367–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011; 471: 104–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Wendel lab and the members of the Speleman lab for experimental support and discussions during this research project and Aline Eggermont for excellent technical assistance. Furthermore, we also thank The Memorial Sloan Kettering (MSK) animal facility and Research Animal Resource Center (RARC) for assistance with mouse experiments. This work is supported by: the Fund for Scientific Research Flanders (FWO) (research projects G.0202.09 and G.0869.10N to FS, 3GA00113N to PVV and G0B2913N and G037514N to TT, research grant 1.5.210.11N to PR; PhD grant to JVdM; postdoctoral grants to TT, PM, PVV, SG, IVdW and PR; BP is a senior clinical investigator), the Belgian Foundation against Cancer (to FS, JV (SCIE 2010-177) and SG), the Flemish Liga against Cancer (VLK) (PhD grant to JVdM and GVP); Ghent University (GOA grant 12051203 to FS; BOF10/PDO/140 to PR; BOF01D35609 to GVP), the Cancer Plan from the Federal Public Service of Health (to FS), the Children Cancer Fund Ghent (to FS) and the Belgian Program of Interuniversity Poles of Attraction (365O9110 to FS, project grant 2010-187 to TL). Additional funding was provided by the NCI (R01-CA142798-01 and U01CA105492-08), the Leukemia Research Foundation, the Experimental Therapeutics Center at MSKCC, the American Cancer Society and the Geoffrey Beene Cancer Center (all to H-GW). This work was further supported by the Cancéropôle d’Ile de France (IDF), the program Carte d’Identité des Tumeurs (CIT) from the Ligue Nationale contre le Cancer, ERC St Grant Consolidator 311660) and the ANR-10-IBHU-0002 Saint-Louis Institute program (all to JS).

Author Contributions

EM and JVdM performed the laboratory experiments and data analysis; GVP, PM, PR and MB assisted with experiments and data-mining. GVP, PM and JV designed the high-throughput 3′UTR–miRNA library screens. JVdM, MB and H-GW performed and coordinated the mouse experiments. TT, IVdW, YB, BDM, NVR, BP, JS and EC collected and analyzed diagnostic T-ALL and normal thymocyte samples. EM, JVdM, PVV, FS and PR designed the experiments, coordinated the research and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Speleman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mets, E., Van der Meulen, J., Van Peer, G. et al. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia. Leukemia 29, 798–806 (2015). https://doi.org/10.1038/leu.2014.276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.276

This article is cited by

Search

Quick links