Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia

Abstract

Kinase inhibitors block proliferative signals in BCR-ABL1+ leukemic cells, but their capacity to induce apoptosis is poorly understood. Initial studies suggested that very brief exposure to kinase inhibitors was sufficient to induce apoptosis in chronic myeloid leukemia (CML) cells. However, flaws in this experimental model have subsequently been identified, leading to the conclusion that apoptosis only occurs with sustained low-level kinase inhibition. Thus, the minimum duration of complete kinase inhibition required to commit CML cells to death is unknown. Here we confirm that <1 h is insufficient to induce significant commitment to death in BCR-ABL1+ cell lines and in primary CD34+ progenitor cells, and establish that commitment to cell death only occurs if kinase inhibition is maintained for 4 h or more. Remarkably, signal transducer and activator of transcription 5 (STAT5) inhibition in combination with transient (<1 h) tyrosine kinase inhibitor (TKI) exposure proved lethal for CML progenitors, despite the reactivation of Bcr-Abl after 1 h. JAK kinase inhibition did not induce cell death in combination with transient TKI exposure. Thus, STAT5 appears to be a critical determinant of the time-dependent sensitivity of CML progenitor cells to TKI treatment in a Bcr-Abl-dependent, but JAK-independent, manner. We conclude that combining kinase inhibition with STAT5 inhibition represents a promising therapeutic approach in BCR-ABL1+ leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Deininger MWN, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  2. Ilaria RL Jr, Van Etten RA . P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996; 271: 31704–31710.

    Article  CAS  PubMed  Google Scholar 

  3. Soliera AR, Mariani SA, Audia A, Lidonnici MR, Addya S, Ferrari-Amorotti G et al. Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia 2012; 26: 1555–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kok CH, Watkins DB, Leclercq T, D'Andrea RJ, Hughes TP, White DL . Low GFI1 expression in white blood cells of CP-CML patients at diagnosis is strongly associated with subsequent blastic transformation. Leukemia 2014; 27: 1427–1430.

    Article  Google Scholar 

  5. Traer E, MacKenzie R, Snead J, Agarwal A, Eiring AM, O'Hare T et al. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia 2011; 26: 1140–1143.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samanta A, Perazzona B, Chakraborty S, Sun X, Modi H, Bhatia R et al. Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia 2011; 25: 463–472.

    Article  CAS  PubMed  Google Scholar 

  7. Yamada O, Ozaki K, Furukawa T, Machida M, Wang YH, Motoji T et al. Activation of STAT5 confers imatinib resistance on leukemic cells through the transcription of TERT and MDR1. Cell Signal 2011; 23: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  8. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013; 123: 4144–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F, Wagner K-U et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol 2012; 8: 285–293.

    Article  CAS  PubMed  Google Scholar 

  10. Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA et al. Stat5 is indispensable for the maintenance of Bcr/Abl-positive leukaemia. EMBO Mol Med 2010; 2: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Holbl A et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011; 117: 3409–3420.

    Article  CAS  PubMed  Google Scholar 

  12. Casetti L, Martin-Lannerée S, Najjar I, Plo I, Augé S, Roy L et al. Differential contributions of STAT5A and STAT5B to stress protection and tyrosine kinase inhibitor resistance of chronic myeloid leukemia stem/progenitor cells. Cancer Res 2013; 73: 2052–2058.

    Article  CAS  PubMed  Google Scholar 

  13. Bertolesi GE, Shi C, Elbaum L, Jollimore C, Rozenberg G, Barnes S et al. The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol Pharmacol 2002; 62: 210–219.

    Article  CAS  PubMed  Google Scholar 

  14. Tecott LH, Kwong LL, Uhr S, Peroutka SJ . Differential modulation of dopamine D2 receptors by chronic haloperidol, nitrendipine, and pimozide. Biol Psychiatry 1986; 21: 1114–1122.

    Article  CAS  PubMed  Google Scholar 

  15. Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 2011; 117: 3421–3429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 2008; 111: 4022–4028.

    Article  CAS  PubMed  Google Scholar 

  17. Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007; 109: 3496–3499.

    Article  CAS  PubMed  Google Scholar 

  18. Brave M, Goodman V, Kaminskas E, Farrell A, Timmer W, Pope S et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res 2008; 14: 352–359.

    Article  CAS  PubMed  Google Scholar 

  19. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    Article  CAS  PubMed  Google Scholar 

  20. Kantarjian H, Cortes J, Kim DW, Dorlhiac-Llacer P, Pasquini R, DiPersio J et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib: 15-month median follow-up. Blood 2009; 113: 6322–6329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah NP, Kasap C, Weier C, Balbas M, Nicoll JM, Bleickardt E et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 2008; 14: 485–493.

    Article  CAS  PubMed  Google Scholar 

  22. Hiwase DK, White DL, Saunders VA, Kumar S, Melo JV, Hughes TP . Short-term intense Bcr-Abl kinase inhibition with nilotinib is adequate to trigger cell death in BCR-ABL(+) cells. Leukemia 2009; 23: 1205–1206.

    Article  CAS  PubMed  Google Scholar 

  23. Snead JL, O'Hare T, Adrian LT, Eide CA, Lange T, Druker BJ et al. Acute dasatinib exposure commits Bcr-Abl-dependent cells to apoptosis. Blood 2009; 114: 3459–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lipka DB, Wagner MC, Dziadosz M, Schnoder T, Heidel F, Schemionek M et al. Intracellular retention of ABL kinase inhibitors determines commitment to apoptosis in CML cells. PLoS One 2012; 7: e40853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wagner MC, Dziadosz M, Melo JV, Heidel F, Fischer T, Lipka DB . Nilotinib shows prolonged intracellular accumulation upon pulse-exposure: a novel mechanism for induction of apoptosis in CML cells. Leukemia 2012; 27: 1567–1570.

    Article  PubMed  Google Scholar 

  26. Simara P, Stejskal S, Koutna I, Potesil D, Tesarova L, Potesilova M et al. Apoptosis in chronic myeloid leukemia cells transiently treated with imatinib or dasatinib is caused by residual BCR-ABL kinase inhibition. Am J Hematol 2013; 88: 385–393.

    Article  CAS  PubMed  Google Scholar 

  27. O'Hare T, Eide CA, Agarwal A, Adrian LT, Zabriskie MS, Mackenzie RJ et al. Threshold levels of ABL tyrosine kinase inhibitors retained in chronic myeloid leukemia cells define commitment to apoptosis. Cancer Res 2013; 73: 3356–3370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hiwase DK, White DL, Powell JA, Saunders VA, Zrim SA, Frede AK et al. Blocking cytokine signaling along with intense Bcr-Abl kinase inhibition induces apoptosis in primary CML progenitors. Leukemia 2010; 24: 771–778.

    Article  CAS  PubMed  Google Scholar 

  29. White D, Saunders V, Lyons AB, Branford S, Grigg A, To LB et al. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 2005; 106: 2520–2526.

    Article  CAS  PubMed  Google Scholar 

  30. Shi JG, Chen X, McGee RF, Landman RR, Emm T, Lo Y et al. The pharmacokinetics, pharmacodynamics, and safety of orally dosed INCB018424 phosphate in healthy volunteers. J Clin Pharmacol 2011; 51: 1644–1654.

    Article  CAS  PubMed  Google Scholar 

  31. Quintás-Cardama A, Vaddi K, Lui P, Manshouri T, Li J, Scherle PA et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115: 3109–3117.

    Article  PubMed  PubMed Central  Google Scholar 

  32. DaSilva L, Rui H, Erwin RA, Howard OM, Kirken RA, Malabarba MG et al. Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol 1996; 117: 131–140.

    Article  CAS  PubMed  Google Scholar 

  33. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363: 1117–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christopher LJ, Cui D, Wu C, Luo R, Manning JA, Bonacorsi SJ et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos 2008; 36: 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  35. Luo FR, Yang Z, Camuso A, Smykla R, McGlinchey K, Fager K et al. Dasatinib (BMS-354825) Pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res 2006; 12: 7180–7186.

    Article  CAS  PubMed  Google Scholar 

  36. Strobl JS, Kirkwood KL, Lantz TK, Lewine MA, Peterson VA, Worley JF 3rd . Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazine. Cancer Res 1990; 50: 5399–5405.

    CAS  PubMed  Google Scholar 

  37. Hoover RR, Gerlach MJ, Koh EY, Daley GQ . Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene 2001; 20: 5826–5835.

    Article  CAS  PubMed  Google Scholar 

  38. Warsch W, Grundschober E, Berger A, Gille L, Cerny-Reiterer S, Tigan AS et al. STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia. Oncotarget 2012; 3: 1669–1687.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW et al. Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007; 109: 2147–2155.

    Article  CAS  PubMed  Google Scholar 

  40. Chen M, Gallipoli P, DeGeer D, Sloma I, Forrest DL, Chan M et al. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. J Natl Cancer Inst 2013; 105: 405–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L White.

Ethics declarations

Competing interests

Nievergall and Hiwase: CSL, research funding, White: Novartis Oncology, honoraria and research funding; BMS, honoraria and research funding; CSL, research funding; Ariad, research funding, Hughes: Novartis Oncology, honoraria, membership on an entity's Board of Directors or advisory committees and research funding; BMS, honoraria, membership on an entity's Board of Directors or advisory committees and research funding; Ariad, honoraria, membership on an entity's Board of Directors or advisory committees.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schafranek, L., Nievergall, E., Powell, J. et al. Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia. Leukemia 29, 76–85 (2015). https://doi.org/10.1038/leu.2014.156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.156

This article is cited by

Search

Quick links