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Chromatin modifiers and the promise of epigenetic therapy
in acute leukemia
SM Greenblatt and SD Nimer

Hematopoiesis is a tightly regulated process involving the control of gene expression that directs the transition from hematopoietic
stem and progenitor cells to terminally differentiated blood cells. In leukemia, the processes directing self-renewal, differentiation
and progenitor cell expansion are disrupted, leading to the accumulation of immature, non-functioning malignant cells. Insights
into these processes have come in stages, based on technological advances in genetic analyses, bioinformatics and biological
sciences. The first cytogenetic studies of leukemic cells identified chromosomal translocations that generate oncogenic fusion
proteins and most commonly affect regulators of transcription. This was followed by the discovery of recurrent somatic mutations
in genes encoding regulators of the signal transduction pathways that control cell proliferation and survival. Recently, studies of
global changes in methylation and gene expression have led to the understanding that the output of transcriptional regulators
and the proliferative signaling pathways are ultimately influenced by chromatin structure. Candidate gene, whole-genome and
whole-exome sequencing studies have identified recurrent somatic mutations in genes encoding epigenetic modifiers in both
acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). In contrast to the two-hit model of leukemogenesis, emerging
evidence suggests that these epigenetic modifiers represent a class of mutations that are critical to the development of leukemia
and affect the regulation of various other oncogenic pathways. In this review, we discuss the range of recurrent, somatic mutations
in epigenetic modifiers found in leukemia and how these modifiers relate to the classical leukemogenic pathways that lead to
impaired cell differentiation and aberrant self-renewal and proliferation.
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INTRODUCTION
Leukemia research has largely focused on regulators of signaling
and cellular differentiation for the past 15 years. Although the
classical model of leukemogenesis has suggested that a mutation
in a gene encoding a regulator of signaling/proliferation is a
requirement for transformation, recent characterization of de novo
acute myeloid leukemia (AML) has suggested that over 40% of
patients do not have an identifiable mutation in a signaling gene.1

Similarly, mutations in myeloid transcription factors occur in
around 20% of AML patients and gene fusion events occur in less
than half of AML patients. Taken together, these findings fail to
completely explain the impaired differentiation that is a defining
characteristic of leukemia. Similarly, genetic characterization of
pediatric T-cell acute lymphoblastic leukemia (T-ALL) has indicated
that somatic mutations in genes involved in development or
signaling are not found in 20% of early T-cell precursor -ALL and
69% of non-early T-cell precursor-ALL.2 Mutations in epigenetic
modifiers are emerging as a large class of mutations that is critical
in the development of both AML and subtypes of ALL. In contrast
to the previous view that this class of mutations are rare, analysis
of 200 cases of de novo AML by a combination of whole-exome
and whole-genome sequencing showed that over 70% of
patients had at least one non-synonymous mutation in a DNA
methylation-related gene or another epigenetic modifier.1 Adding
to this importance, many mutations classically defined for their
role in proliferation and differentiation are now understood to
have important roles in regulating chromatin structure.

SOMATIC MUTATIONS AND ALTERATIONS IN CHROMATIN-
MODIFYING ENZYMES
Chromatin modifiers are enzymes that catalyze the chemical
conversion of cytosine residues in DNA, or lysine, arginine,
tyrosine and serine residues in histone proteins. The importance
of epigenetic modifiers in leukemia was first suggested by the
identification of recurrent translocations in histone acetyltransfer-
ase and methyltransferase genes (for example, CBP, P300, NSD1,
MLL and MOZ). In recent years, somatic mutations have also been
identified in genes that encode the proteins controlling DNA
cytosine modifications (for example, DNMT3A and TET2). Figure 1
depicts the epigenetic regulation of methylation and acetylation,
and their potential targeting in leukemia by ‘epigenetic-modifying
therapy’.

Cytosine modifications
DNA methylation has an important role in myeloid and lymphoid
commitment, as well as hematopoietic stem cell (HSC) self-
renewal.3–5 Methylation profiling of mouse multipotent progenitor
cells has indicated that the promoters of several transcription
factors become methylated during the cellular differentiation
toward common myeloid progenitors and common lymphoid
progenitors.6 Furthermore, methylation profiling has been used to
classify subtypes of leukemia, with prognostic significance.7–9

Genome-wide cytosine methylation profiling, combined with
copy number and gene expression analysis in childhood ALL,
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has suggested that there is an aberrant epigenetic signature
that is common to all cases, regardless of disease subtype.
This suggests that a common set of epigenetically deregulated
genes may be required for the initiation or maintenance of
hematopoietic transformation. However, DNA methylation
patterns clearly associate with specific chromosomal rearrange-
ments. Indeed, oncogenic translocations involving transcription
factors such as ETV6-RUNX1 have prognostic value (favorable
in this case) and are associated with specific alterations
in methylation.10 Overexpression of EVI1 has been associated
with an aberrant hypermethylation signature and poor prognosis
in AML.11 Finally, DNA methylation profiling in myelodysplastic
syndrome (MDS)/AML suggests that aberrant methylation may be
the primary mechanism of tumor suppressor gene silencing and
clonal evolution to acute leukemia.12

DNMT3a is an enzyme required for de novo methylation and a
frequent target of somatic mutations, occurring in over 30% of
cytogenetically normal-AML patients and 16% of T-ALL.13–17

Approximately 60% of the mutations in DNMT3A result in the
heterozygous substitution of arginine 882 in the catalytic domain
of the enzyme, leading to decreased methyltransferase activity
in vitro.18 Interestingly, the wild-type DNMT3A allele is still
expressed and recent data suggest that the DNMT3A mutant
proteins exert a dominant negative effect through interactions
with wild-type DNMT3A and DNMT3B.19 DNMT3A-deficient mouse
HSCs display altered patterns of cytosine methylation including
both hypomethylated and hypermethylated regions.13,18,20

DNMT3A appears to be required for the normal self-renewal
capacity of HSCs in adult mice and for maintaining the
differentiation potential of serially transplanted HSCs in wild-
type recipients.3 DNMT1 also appears to be critical for leukemia
stem cell function, as haploinsufficiency of Dnmt1 in an MLL-AF9-
induced mouse model resulted in reduced DNA methylation and
bivalent chromatin marks associated with tumor suppressor gene
de-repression.21

The ten-eleven translocation (TET) family of proteins has
recently been shown to contribute to the regulation of DNA
methylation through the conversion of 5-methylcytosine (5-mc) to
5-hydroxymethyl cytosine (5hmC).22 This modification is thought
to block the binding of proteins that mediate transcriptional
silencing by recognizing methylated DNA; thus, it is found in

regulatory regions of genes that are actively transcribed.23,24

5hmC is also thought to be a critical step on the path to DNA
demethylation.25 TET2 mutations occur in 7–23% of AML and 49%
of chronic myelomonocytic leukemia and are associated with
poor prognosis in cytogenetically normal-AML.26–29 Deletion of
Tet2 in mice leads to increased self-renewal, expansion of the
hematopoietic stem and progenitor cell compartment and
altered cell differentiation toward the monocytic/granulocytic
lineages.30–32 TET2 mutations in myeloid malignancies are
generally associated with low 5hmC levels and both DNA
hypermethylation and hypomethylation at CpG sites in AML.33

TET2 mutations are mutually exclusive with gain of function
mutations in the isocitrate dehydrogenase 1 and 2 enzymes
(IDH1/2) that are found in 15–33% of AML.26,34–38 In general,
IDH1/2 mutations are associated with poor prognosis, but
outcome may vary somewhat based on the location of the
IDH1/2 mutation.39 The reason for this mutual exclusivity was
rapidly identified; IDH1/2 regulates the conversion of isocitrate to
a-ketoglutarate (a-KG), and mutations in the arginine residues of
IDH1/2 alter its enzymatic function, leading to the aberrant
accumulation of a 2-hydroglutarate (2-HG), an ‘oncometabolite’
that impairs the function of TET proteins and the activity of the
jumonji (JmJ) family of histone demethylases, which also require
a-KG.40,41 Thus, IDH1 mutations impair histone demethylation,
and, biologically, appear to inhibit differentiation.42 In a bone
marrow transplantation model, IDH1 mutations cooperated with
HOXA9 to accelerate the development of an MPD-like disorder.43

Knock-in mice that express the IDH1 (R132H) mutation have
increased (that is, detectable) 2-HG serum levels and expansion
of the multipotent progenitor population.44 The same increase in
2-HG is seen in patients with IDH1/2 mutant AML.45

Polycomb group proteins
Hematopoiesis requires the proper temporal and lineage-specific
regulation of gene expression, such as the homeotic genes, whose
expression is reciprocally controlled by large protein complexes
containing the polycomb group (PcG) proteins or trithorax group
(Trx) proteins. The balance between these complexes is crucial
for the normal regulation of embryonic development and cell
differentiation, with alterations in HoxA and HoxB cluster gene
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Figure 1. Regulation of methylation and acetylation in leukemia and their therapeutic potential. The figure shows a selection of proteins that
add, remove and recognize chromatin modifications, as well as the the proteins that regulate DNA methylation. The genes encoding these
proteins can be altered through mutation, deletion or altered expression in leukemia. Ac, acetylation; DNMT, DNA methyltransferase;
HAT, histone acetyltransferase; HDAC, histone deacetylase; KDM, lysine demethylase; Me, methylation; PKMT, lysine methyltransferase;
PRMT, arginine methyltransferase.
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expression being a characteristic of many hematologic malig-
nancies.46 Figure 2 depicts the normal PcG complexes, the
leukemia-associated MLL fusion complexes and their relevance
to the epigenetic therapy of leukemia. The major PcG protein
complexes, known as polycomb repressive complex 1 (PRC1) and
polycomb repressive complex 2 (PRC2), maintain transcriptional
silencing. The PRC2 complex consists of four core members, EZH1/2,
EED, SUZ12 and RBAP48. EZH2 contains the methyltransferase
activity that catalyzes the di- and trimethylation of H3K27, which is
generally a repressive chromatin mark.47 EZH2 is the most
frequently mutated PRC2 component in cancer and it is also
upregulated in many solid tumors, often serving as an indicator
of aggressive disease. While heterozygous gain-of-function
mutations of EZH2 have been identified in diffuse large B-cell
lymphomas, loss-of-function missense, nonsense and frameshift
mutations are typically observed in myeloid malignancies,
especially MDS.48–50 EZH2 mutations are rare in most acute
leukemias (1–2% of de novo AML), but they are found in 16–19%
of T-ALL.51,52 Recurrent deletions or somatic mutations in
SUZ12 (21%) and EED (15%) were also identified in early T-cell
precursor-ALL.2

The site-specific recruitment of PRC complexes to chromatin is
an important step in the regulation of histone methylation. As PRC
complexes do not contain DNA sequence specific binding activity,
they are subject to interaction with other proteins, such as ASXL1
(addition of sex combs like 1). Deletions and point mutations in
ASXL1 occur in 6–30% of AML and 43% of chronic myelomono-
cytic leukemia.28,53 These mutations promote transformation
by decreasing PRC2 recruitment and thereby reducing H3K27
methylation, leading to loss of the transcriptional repression of
genes whose expression can promote leukemogenesis, including
HOXA9.54 Loss-of-function Asxl1 mutations showed a mild
phenotype in mice, with defects in myeloid and lymphoid
progenitors, but no evidence of myelodysplasia or leukemic
progression, while conditional knockout of Asxl1 in the
hematopoietic compartment resulted in myelodysplasia.54,55

Another PRC2 interacting protein, JARID2, is also involved in
recruiting the complex to target loci.56 JARID2 inhibits the lysine

methyltransferase activity of PRC2, and it is deleted during
the progression of some chronic phase myeloid malignancies to
acute leukemia.57

The PRC1 complex recognizes H3K27me3 via its chromo-
domain-containing CBX proteins and is involved in the main-
tenance of gene repression through histone H2A ubiquitination
and the recruitment of DNA methyltransferases.58 The diverse
forms of the PRC1 complex consist of a core containing BMI1 and
the ubiquitin ligases RING1A and RING1B, but also CBX proteins,
Ph homologs (PHC 1–3) and other RING-finger domain containing
proteins. PRC1 contains several proteins linked to cancer including
BMI1, a protein associated with HSC self-renewal and the leukemic
reprogramming of myeloid progenitors.59,60 RING1A and RING1B
contain important histone ubiquitin ligase activity, and both BMI1
and RING1 components have been shown to be overexpressed in
myeloid malignancies and have a critical role in hematopoiesis.61

Bmi1-deficient granulocyte/macrophage progenitors (GMPs)
transformed with MLL-AF9 showed impaired leukemia stem
activity and increased differentiation potential. Conditional
inactivation of Ring1B resulted in a reduction in total bone
marrow cell numbers, while the proliferation of myeloid
progenitors and percentage of lineage negative cells
increased.62 Other fusion proteins such as PLZF/RARA have been
shown to interact with BMI1 and PRC1 complexes, recruiting the
complex to retinoic acid response elements.63 Taken together,
these studies suggest that oncogenic fusion genes require PRC1
protein activity in order to establish the leukemic reprogramming
of myeloid progenitors, including the block in their differentiation.
The recurrent loss-of-function mutations, copy-number alterna-

tions or overexpression of PRC components in lymphoid leukemia
suggest that these complexes may act as epigenetic tumor
suppressors. Supporting this notion is the finding that over-
expression of PRC2 components can inhibit the function of the
complex by altering the subunit composition, thereby leading
to aberrant targeting of the complex.64 The recruitment of
DNA methyltransferases by PRC2 is another critical step in
transcriptional repression and it too may be altered by somatic
mutations in DNMT3A.65 All these changes may lead to aberrant
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Figure 2. Polycomb repressive complexes and MLL-fusion complexes in leukemia and their therapeutic potential The PcG protein complexes,
known as PRC1 and PRC2, maintain transcriptional silencing. EZH2 contains the methyltransferase activity for PRC2 that catalyzes the di-and
trimethylation of H3K27. Recurrent deletions and sequence mutations in EZH2, SUZ12 and EED are found in T-ALL. ASXL1 mutations promote
transformation by decreasing PRC2 recruitment and contributing to loss of transcriptional repression. Another PRC2-interacting protein,
JAR1D2, is involved in the recruitment of the complex to target loci and is deleted in the progression of chronic phase myeloid malignancies
to acute leukemia. PRC1 complex recognizes H3K27me3 via the chromodomain-containing CBX proteins and is involved in the maintenance
of gene repression through histone H2A ubiquitination and the recruitment of DNA methyltransferases. PRC1 contains several proteins linked
to cancer including Bmi-1, a protein associated with HSC self-renewal, and the ubiquitin ligases Ring1A and Ring1B. Several MLL fusion
proteins can aberrantly recruit the DOT1L methyltranferase, leading to methylation of H3K79 and the activation of genes driving cellular
transformation. MLL fusion proteins are also dependent on Menin, a component of the MLL-SET1-like histone methyltransferase complex and
an adaptor to the chromatin-associated protein LEDGF.
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activation of PRC target genes or the inappropriate recruitment
of the complex to other gene targets, leading to aberrant
transcriptional repression.

MLL proteins
Mutations involving mammalian versions of trithorax genes are
found in leukemia (MLL1) and in solid tumors as well (MLL 2,3,4,5).
The MLL genes encode histone methyltransferases whose
mutations can alter chromatin structure. MLL proteins are
members of the SET domain containing protein lysine methyl-
transferase family; they methylate H3K4, generating a mark of
transcriptional activation. Translocations involving MLL and its in-
frame fusion partners have been observed in 5–10% of AML and
greater than 70% of infant ALL; they are generally associated with
poor prognosis.66–70 In-frame partial tandem duplications of MLL
occur in 5–7% of de novo AML and they too are associated with an
unfavorable prognosis.71 The direct binding targets of MLL fusion
proteins include HOXA cluster genes and MEIS1.72 Enforced
expression of MLL-AF9, or a combination of HOXA9 and MEIS1,
induces the leukemic transformation of hematopoietic stem and
progenitor cells in mouse models.73 MLL rearrangement leads to
acquisition of H3K79 methyltransferase activity at MLL target sites
due to the recruitment of the methyltransferase DOT1L.74–76 MLL
fusion proteins are also dependent on Menin, a component of the
MLL-SET1-like histone methyltransferase complex, that serves as a
link to the chromatin-associated protein LEDGF.77,78 Genetic loss
of Menin induces differentiation and reverses aberrant HOX gene
expression in leukemic blasts, while disrupting the Menin
interaction domain of MLL downregulates MEIS1 and inhibits
cell proliferation.79,80 Peptides that directly disrupt the LEDGF-MLL
interface have shown efficacy in MLL-AF9-induced AML, and it
appears that numerous MLL-interacting proteins must remain fully
functional for MLL-FP-driven leukemias to persist.81

Other lysine methyltransferases and demethylases
NSD1 encodes another protein lysine methyltransferase involved
in leukemia through its fusion with the nucleoporin 98 gene
(NUP98), generating the NUP98-NSD1 fusion protein that is
associated with poor prognosis in patients.82–84 Histone lysine
methylation can be reversed by the amine oxidase type lysine-
specific demethylases, including LSD1 and LSD2, which are
generally referred to as ‘erasers’ because they remove histone
marks. LSD1 is of particular interest as it exhibits specificity for
H3K4 and H3K9 methylation, is critical for erythroid differentiation
and is highly expressed in AML.85 Global H3K4 methylation levels
can also be altered by mutations or gene expression changes in
the Jumanji C (JmjC) family of lysine demethylases. These genetic
abnormalities include translocations involving the JARID1 family of
histone H3K4 demethylases and overexpression of KDM2B, an
H3K36me2-specific demethylase that is required for initiation and
maintenance of AML.86 Fusion of the NUP98 and JARID1A genes
(also known as KDM5A) occurs in 10% of acute megakaryoblastic
leukemia.87,88 This translocation creates haploinsufficiency for
Nup98 and JAR1D1A, and it leads to alteration of JARID1 function,
possibly due to recruitment of p300/CBP by the fusion protein.89

UTX, another member of the JmjC family of lysine demethylases, is
altered through inactivating mutations in AML and ALL.90–92

Protein arginine methyltransferases
Protein arginine methyltransferases (PRMTs) catalyze the mono- or
dimethylation of arginine residues in histones, and other non-
histone substrates, including transcription factors. Asymmetric
dimethylation of histones is generally associated with gene
activation, whereas symmetric dimethyl-arginine is associated
with gene repression. PRMTs appear to have some role in acute
leukemia, as several members of the PRMT family are

overexpressed in AML including PRMT4 and PRMT5.93–95 Our lab
has recently reported that PRMT4 can block myeloid
differentiation, at least in part by promoting the assembly of a
repressive RUNX1 complex. Knockdown of PRMT4 in several
human leukemia cell lines, and in human CD34þ cells, promotes
myeloid differentiation.96 PRMT1 appears to be a critical member
of the MLL transcriptional complex, while PRMT6 has been shown
to inhibit H3K4 methylation by MLL.97,98

Histone acetyltransferases
Histone acetyltransferases (HATs) catalyze the transfer of an acetyl
group to lysine residues, neutralizing the positive charge and
promoting a less compact chromatin state that is associated with
increased gene transcription. Mutations in the HAT CBP have been
identified in 18% of relapsed acute lymphoblastic leukemia,
resulting in impaired histone acetylation and aberrant transcrip-
tional regulation of CBP targets.51,99,100 MOZ, a member of the
MYST family of acetyltransferases, is a critical regulator of HSC
maintenance and global Hox gene expression, through its effects
on histone H3K9 acetylation at Hox loci.101–103 MOZ is involved in
several chromosomal translocations in leukemia including fusion
to P300, CBP and TIF2.104–106 TIP60 is another HAT thought to have
a tumor suppressive role in leukemia through the recognition of
H3K9me3.107 TIP60 protein levels are reduced in AML patients and
TIP60 has been shown to interact with ETV6, a frequent fusion
partner in B-precursor ALL and a frequent site of deletions or
mutations in acute leukemia.108

Cross-talk between chromatin regulatory complexes
Transcriptional activation requires both the addition of activating
post-translational modifications and the removal of the repressive
modifications, such as H3K27 methylation. Therefore, it is not
surprising that leukemia cells often display changes in both PcG
and Trx group proteins concomitantly. The first connection
between PcG proteins and MLL leukemia-associated factors
emerged from the observation that MLL-AF9-expressing leukemic
stem cells achieve transcriptional activation and overcome
senescence through interactions between the PRC1 components
BMI1 and CBX8.59,109

The cross-talk between normal or oncogenic epigenetic
modifiers and other oncogenes may have a potential for
therapeutic intervention. A prime example of this is the efficacy
of inhibiting PRC2 activity in MLL-rearranged leukemias.110–112

Conditional deletion of Ezh2 in GMPs expressing MLL-AF9 reduced
their proliferation in culture and attenuated the progression to
AML.113 Although genetic loss of Ezh2 resulted in a mild
phenotype in the MLL-AF9 mouse model, loss of PRC2 function
through deletion of Eed significantly inhibited leukemia cell
growth.110 Inhibition of PRC2 components has shown pre-clinical
efficacy in acute promyelocytic leukemia as well, a disease driven
by the PML-RARa fusion, also known as the (15;17) translocation.
PML-RARa was shown to complex with the PRC2 components
SUZ12, EZH2 and EED and recruit them to specific promoters. This
study showed a link between PML-RARa and PRC2-driven H3K27
methylation and DNA methylation. Inhibition of PRC2 induced
demethylation of PML-RARa target genes, reactivating the
promoters and driving granulocytic differentiation.62,114

The ability of oncogenic fusion proteins to interact with
proteins, which their wild-type constituents may not, can be used
to develop new therapeutics. For example, MLL fusion interact
with the disruptor of telomere silencing 1-like (DOT1L) protein, a
histone methyltransferase that catalyzes the methylation of
H3K79, while wild-type MLL does not.115 This association leads
to aberrant recruitment of DOT1L and enhanced H3K79
methylation at MLL fusion protein-directed loci.74 Loss of DOT1L
in MLL-rearranged leukemia cells promotes differentiation and
apoptosis as well as the decreased expression of MLL fusion

S
P
O
T
L
IG

H
T

Chromatin modifiers in leukemia
SM Greenblatt and SD Nimer

1399

& 2014 Macmillan Publishers Limited Leukemia (2014) 1396 – 1406



targets. Finally, the development and maintenance of MLL-
rearranged leukemia appears to be dependent on DOT1L
in vivo, so that DOT1L inhibitors have potential therapeutic
promise in this disease.75,116–118

One of the challenges in developing new epigenetic therapies is
to understand how these pathways act in concert to regulate
transcription. Integrating large amounts of genetic data may mean
letting go of preconceived notions of mutation classification and
protein function. One of the findings of The Cancer Genome Atlas
(TCGA) recent characterization of de novo AML was the discovery
of recurrent mutations in genes that encode components of
cohesion and the spliceosome complexes.1 Mutations in the
cohesion complex were found in 13% of de novo AML and were
predicted to occur in the leukemic initiating clone.119 Recent work
has shown the association of DNMT3B with this complex, possibly
providing a link between chromatin condensation and cytosine
methylation.120 Similarly, mutations in genes encoding the
spliceosome complex have been found in many myeloid and
lymphoid malignancies including 14% of de novo AML, 10–15% of
CLL and 38% of MDS.121,122 Interestingly, in MDS patients, these
mutations were more likely to co-occur with mutations in
epigenetic modifiers, suggesting a possible cross-talk between
these two pathways.123

Significance of chromatin modifiers in leukemia
An important question is whether these mutations in epigenetic
modifiers are truly leukemic drivers and therefore appropriate
therapeutic targets. MLL fusion proteins may be sufficient to drive
leukemogenesis, as MLL-rearranged leukemias have the fewest
number of mutations of any of the known cancers for which TCGA
data exist.1 The identification of TET2 and DNMT3A mutations in a
normal elderly population suggests that these mutations may be
involved in clonal selection and clonal fitness over time, but they
can exist without malignant transformation.124,125 This enhanced

capacity for self-renewal, clonal expansion and skewing toward
the myeloid lineage may make individual cells more susceptible to
malignant transformation by other genetic alterations. The rate of
these mutations in pre-leukemic disorders supports a role for
epigenetic modifiers in the early stages of leukemic development.
ASXL1 mutations have been identified in over 30% of patients
with refractory anemia with excess blasts and in a similar
percentage of AML that evolved from MDS.126 Interestingly,
chronic myelomonocytic leukemia, the disease with the highest
rate of epigenetic modifier gene mutations, is a myelodysplastic/
myeloproliferative neoplasm (MDS/MPN) rather than an acute
leukemia.28,127,128

Numerous studies show that introducing epigenetic modifier
gene mutations into mouse hematopoietic stem/progenitor cells
often confers increased self-renewal, and myeloproliferation with
extramedullary hematopoiesis, but not transformation to acute
leukemia. Genetic knock out of these genes in mouse models have
shown that they are critical for driving HSC self-renewal and
differentiation; thus, they contribute to but are not themselves
sufficient to cause acute leukemia. Given the remarkable
demonstrations of clonal heterogeneity in cancer, the early
occurrence of epigenetic mutations suggests that they may be
the most relevant therapeutic targets, as they are present in a
greater number of leukemic clones than those mutations that
occur in the final stages of transformation.

PROGNOSTIC IMPORTANCE OF CHROMATIN MODIFIERS AND
THERAPEUTIC INTERVENTION
The discovery of recurrent mutations in chromatin modifiers has
led to efforts to correlate these genetic changes with clinical
characteristics, and several such mutations do have prognostic
significance (Table 1). TET2 mutations have been associated with
adverse overall survival in intermediate risk AML.29 Similarly,
multiple studies have shown that DNMT3A mutations confer

S
P
O
T
L
IG

H
T

Table 1. Clinical significance of chromatin modifiers in leukemia

Mutation Clinical association Role in chromatin biology References

TET2 Mutations found in 7–25% of AML. Mutations and
copy-number changes associated with worse
prognosis in CN-AML.

Regulates demethylation through the conversion
of 5-methylcytosine to 5-hydroxymethyl-cytosine.
Mutations result in global DNA hypermethylation.

22,26,27,29,33

IDH1/2 Missense mutations in the active site of the enzyme
seen in 6–30% of adult AML. Adverse survival in
CN-AML.

Altered enzyme activity leading to the accumulation of
2-HG; associated with aberrant locus-specific
hypermethylation.

33–45

DNMT3A Mutations occur in up to 36% of CN-AML and 16% of
adult ETP-ALL. Associated with worse overall survival.

Enzyme involved in de novo DNA methylation. Mutations
associated with gene expression changes in HoxB cluster.

13–20

ASXL1 Deletions and point mutations in 6–30% of AML
patients.

Mutations result in decreased H3K27 methylation
and decreased recruitment of PRC2 to target loci.

28,53–55

EZH2 Mutations identified in 2% de novo AML. Important H3K27 methyltransferase that is the enzymatic
component of PRC2.

48–52

MLL-FP MLL-rearrangement occurs in 5–10% of AML.
MLL rearrangements observed in 70% of infant ALL.
Associated with poor prognosis.

Acquisition of H3K79 methyltransferase activity due to
recruitment of Dot1L. Regulates HoxA cluster genes and
Meis1 gene expression.

67–73

CBP Mutations and deletions identified in 18% of
relapsed ALL.

Transcriptional co-activator that has histone and non-
histone protein acetyltransferase activity.

99,100

NUP98-NSD1 Detected in 5% of pediatric AML patients.
Poor prognosis in children and adults.

Thought to upregulate HoxA cluster genes and Meis1
expression through recruitment of CBP/p300 and
maintenance of H3K36 methylation.

82–84

ETV6-RUNX1 Translocations occur in 25% of B-precursor ALL.
Associated with poor prognosis.

Associated with dominant negative RUNX1 and ETV6
functions, as well as aberrant DNA hypomethylation.

152,153

Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; CN, cytogenetically normal; ETP, early T-cell precursor; PRC, polycomb
repressive complex.
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adverse risk to intermediate risk AML patients, although this
appears to be restricted to the subset of patients with FLT3-ITD
mutations.13,14 ASXL1 mutations are associated with adverse
overall survival in cytogenetically normal-AML or intermediate
risk AML, whereas specific IDH1 mutations have been shown to be
associated with favorable outcomes.29,39 When combined with
current cytogenetic and mutations testing, these markers may be
useful in risk stratification or treatment selection. For example,
genetic profiling of AML patients suggests that those with
DNMT3A mutations have improved outcome when treated with
high dose vs lower dose daunorubicin.52

Epigenetic therapeutics
We now know that epigenetic (DNA and chromatin) modifications
are in fact, generally reversible, allowing for lineage specific
changes in gene expression during differentiation, cell division
and DNA repair. Indeed, it is the inherent plasticity of epigenetic

modifications that makes them susceptible to pharmacological
intervention. Thus, the discovery of recurrent mutations in
chromatin modifiers has provided additional insights into the
pathogenesis of leukemia, as well as the development of new
highly potent and directed epigenetic therapies. A summary of
current epigenetic therapies and their relevance to leukemia can
be found in Table 2.
DNA methyltransferase inhibitors and histone deacetlylase

inhibitors were the first epigenetically targeted inhibitors to be
FDA approved for the treatment of cancer in the United States.
Azacitidine and decitabine are nucleoside analogs and inhibitors
of the DNA methyltransferase enzymes DMNT1 and DMNT3.
They are thought to act through the gene hypomethylation
(for example, of tumor suppressor genes); however, this has never
been formally shown. Combinations of these inhibitors are
currently being evaluated in clinical trials for AML and MDS.
histone deacetlylase inhibitors demonstrated modest therapeutic
potential in early clinical trials for B-cell lymphoma, myeloma,
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Table 2. Epigenetic targeted therapy in leukemia

New and notable epigenetic therapies in leukemia

Class of epigenetic
target

Target of therapeutic Mechanism and biological support References

Histone
acetytransferases
(HATs)

p300/CBP Inhibits cellular proliferation, reduces colony formation and induces
apoptosis in AML1-ETO positive AML cell lines and primary blasts.
Small-molecule inhibition of CBP/catenin interactions eliminate
drug-resistant clones in ALL.

154,155

MYST family
(TIP60, MOZ)

Small molecule inhibition of histone acetyltransferase activity.
Knockdown of Tip60 in a CML cell line results in loss of
transcriptional repression at c-myb targets.

101–106

Readers of lysine
acetylation

Bromodomain-containing
proteins (BRD4)

Small molecule inhibitors targeting the acetyl-lysine binding
pocket. Efficacy against MLL fusion leukemia cell lines and mouse
models through the induction of early cell cycle arrest and
apoptosis. In Phase I clinical trials for patients with acute leukemia.

136–139

Histone lysine
demethylases

LSD1 (KDM1A) Disruption of histone demethylase activity. Inhibitors have been
shown to induce differentiation in MLL-rearranged leukemias.
Inhibitors may be efficacious when combined with ATRA in non-APL
patients.

131,132

JmjC-containing demethylases
(UTX, JMJD3, JARID1, KDM2B)

Small molecular inhibitors are competitive for 2-oxoglutarate. A
JMJD3/UTX inhibitor reduces proinflammatory cytokine production
by macrophages. Depletion of Kdm2b in hematopoietic progenitors
impairs Hoxa9/Meis1-induced leukemic transformation.

86,158,159

Metabolic modulators
of methylation

IDH1/2 IDH1/2 inhibitors decrease the production of 2-HG, induce
demethylation of histone H3K9me3 and increase expression of
genes associated with differentiation.

40–45

Histone
methyltransferases
and associated
proteins

Menin/LEDGF Small molecule inhibitors that target the Menin–MLL interaction
developed for MLL rearranged leukemias. Inhibitor induces growth
arrest and inhibits transformation in MLL-transduced bone marrow
cells. Small peptides disrupting the LEDGF-MLL interaction show
increased disease latency in an MLL-AF9 leukemia model.

77–81

Dot1L Selective for MLL-rearranged acute leukemia cell lines. Inhibited
H3K79 methylation and MLL-fusion target gene expression.

74–76,115–118

EZH2 Small molecules that disrupt the methyltransferase activity of PRC2.
Peptides have been developed that disrupt the EZH2–EED protein
interactions. MLL-AF9 leukemia cells treated with inhibitor undergo
growth arrest and myeloid differentiation.

133–135

G9a Small molecular inhibitors targeting the histone peptide binding
pocket G9a inhibition resulted in repression of JAK2 in a CML cell
line.

160,161

Arginine methyltransferses
(PRMTs)

Knockdown of PRMT1 suppresses the self-renewal capability of
AE9a cells. Downregulation of PRMT4 promotes myeloid
differentiation in leukemia cells and prolongs survival in a leukemia
transplantation model.

162–164

Abbreviations: ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; ATRA, all trans-retinoic acid.
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myelodysplastic syndrome and AML. They are currently FDA
approved only for the treatment of cutaneous T-cell lymphoma.
Despite extensive research, we still do not fully understand the
mechanism of action of these therapeutics.
The discovery of recurrent IDH1/2 mutations has led to the

development of small molecule inhibitors that aim to target the
mutant enzymes. These agents are being evaluated in preclinical
studies for their use in patients with glioma or AML. In cell lines, a
selective IDH1-R132H inhibitor decreased the production of
R-2-hydroxyglutarate (R-2HG), induced demethylation of histone
H3K9me3 and increased expression of genes associated
with differentiation.129 A small molecule inhibitor specific for
IDH2-R140Q induced the differentiation of an erythroleukemia cell
line and also human acute leukemia cells.130 Similarly, inhibition of
mutant IDH1 decreased 2-HG production, induced apoptosis in
murine cells and inhibited the proliferation of progenitor cells
obtained from AML patients with IDH1 mutations.43

The high frequency of mutations in components (or regulators)
of the PRC2 complex in myeloid and lymphoid malignancies, and
the resulting changes in the level of H3K27me3, has sparked
interest in the lysine demethylases as therapeutic targets. Small
molecule catalytic site inhibitors are being developed for this
family of proteins and show selectivity for these enzymes.
Inhibition of LSD1, by RNAi or small molecules, has recently
been shown to induce the differentiation of MLL-rearranged
leukemias. In addition, there is evidence that LSD1 inhibitors
may be efficacious in non-APL patients when combined with all
trans-retinoic acid (ATRA).131 This could make a currently FDA-
approved therapy (ATRA) more applicable to this larger number of
patients.132 Potent inhibitors of the JmjC family of histone
demethylases, which includes UTX, JMJD3 and JARID1, are being
developed for use in cancer, and potent and selective inhibitors of
EZH2 have been developed for use in lymphoma and possibly
leukemia as well.133,134 Another strategy has been used to develop
peptides, which disrupt EZH2–EED protein interactions, and these
show efficacy in MLL-AF9-expressing leukemia cells.135

Another level of transcriptional regulation is provided by
the proteins that recognize specific histone residues based on
post-translational modifications, known as chromatin ‘readers’.
The bromodomain-containing proteins are responsible for recognizing
acetylated lysine residues on histone tails. Quite unexpectedly,
MLL fusion protein-driven AML is sensitive to JQ1, a BRD4
inhibitor, and MYC-driven malignancies are also quite sensitive to
such bromodomain inhibitors in vitro and in animal models.136,137

Several bromodomain-containing proteins are amenable to small
molecule inhibition and demonstrate therapeutic efficacy in
preclinical models of AML.138 Bromodomain inhibitor treatment
of B-ALL cell lines decreased their viability and induced the
loss of BRD4 at the MYC promoter, causing downregulation of
MYC transcription and the reduced expression of c-Myc target
genes.139 A Phase I study of a BRD2/3/4 inhibitor in patients with
hematologic malignancy is ongoing (NCT01713582). Inhibitors of
other ‘epigenetic readers’ such as the chromodomain-containing
proteins that recognize methyl-lysine are also being explored.140

Challenges for epigenetic-targeted therapy
A major challenge in the development of more effective
epigenetic therapies is the lack of biomarkers to evaluate efficacy
in a clinical setting. In contrast to the pharmacodynamics
of receptor tyrosine inhibitors or chemotherapeutics, the effects
of epigenetic therapies often take a long time to observe. Clinical
trials using hypomethylating agents have suggested that maximal
DNA hypomethylation may occur more than a week after their
administration, while effects on proliferation, differentiation and
cell survival may not occur for weeks.141–143 Therefore, established
measures of clinical response may be unhelpful in evaluating the
mechanism of action of these compounds. There has been

an effort to correlate response with the methylation status of
specific genes, changes in gene expression or levels of microRNA;
however, the connection between these biomarkers and efficacy
is generally weak.144–146 Although methylation of tumor
suppressor genes decrease in some patients, global methylation
changes are not consistently associated with changes in gene
expression or clinical responses. Also, there is a need to
understand why certain subsets of patients fail to respond to
treatment.147

There is also a need to understand more about the biology of
these large multiprotein chromatin-modifying complexes and
the mechanism of action of the inhibitors. The function of
these complexes may be cell context dependent, hinging on the
underlying genetic landscape of the cell and the available
interacting proteins. Mutations in the methyltransferase EZH2
demonstrate how both gain-of-function and loss-of-function
mutations can lead to lead to aberrant transcription and
proliferation, depending on the cellular context. Chromatin-
modifying enzymes may have much more diverse roles than
previously thought, as many histone methyltransferases are now
known to act on non-histone substrates. Despite these limitations
in our understanding, chromatin-modifying protein inhibitors will
be an important tool to help define these functions and develop
more effective therapeutic strategies.
Although leukemia cells have relatively few mutations

compared with solid tumors, it is rare for cancer to be driven by
a single genetic or epigenetic mutation. In solid tumors, targeting
of an oncogenic driver often leads to activation of the same or
distant oncogenic pathways that allow the tumor to escape
treatment. To date, most preclinical studies of chromatin modifier
inhibitors have focused on MLL-rearranged leukemia, which is
highly dependent on fusion protein-dependent effects for
survival. To make ‘epigenetic-modifying therapy’ more applicable
to patients, we will need to consider how chromatin-modifying
mutations fit into the larger genetic landscape, which include
changes in signaling pathways. Epigenetic therapy might lead to
resistance through epigenetic or non-epigenetic mechanisms.
For example, clinical trials of DNMT inhibitors in MDS and CML
have shown that cells present at the time of relapse have less
methylation than those present before treatment, suggesting
methylation-independent clonal evolution. Hopefully, there will
be successes in combining epigenetic modifying therapies
with other classes of inhibitors. Histone deacetlylase inhibitors
have shown promising preclinical activity in combination with
chemotherapeutic drugs, inhibitors of heat-shock proteins,
proteasome proteins and tyrosine kinases.148–150 It is also
encouraging that the first studies of the inhibitors of epigenetic
modifiers have demonstrated unexpected effects on previously
identified leukemic drivers. For example, the ability of
bromodomain inhibitors to target critical oncogenes, such as
c-Myc or Bcl-2, is promising and somewhat unexpected.151–154

Although the biology of epigenetic regulation is complex, novel
epigenetic therapies show tremendous potential for improving
our therapy of acute leukemia and other related diseases.155–157

SUMMARY
The recent completion of the Cancer Genome Atlas Research
Network’s analysis of adult de novo AML has highlighted the
importance of mutations in chromatin modifiers. Although
individual mutations in chromatin modifiers do not appear to be
sufficient to induce leukemia in mouse models, the changes
in self-renewal and differentiation they mediate are critical steps
in the transformation of hematopoietic stem/progenitor cells.
Moreover, it is becoming increasingly clear that the interaction of
transcription factors with epigenetic modifiers is critical to their
oncogenic activity. When these interactions are inhibited in mouse
models, leukemic precursors lose the ability to differentiate,
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self-renew and propagate in recipient mice. The challenge for the
future will be to translate this knowledge into the development of
new, combination therapies, targeting leukemic driver mutations
and their dependence on chromatin-modifying enzymes.
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