Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm

Abstract

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare disease that currently lacks genomic and genetic biomarkers to assist in its clinical management. We performed whole-exome sequencing (WES) of three BPDCN cases. Based on these data, we designed a resequencing approach to identify mutations in 38 selected genes in 25 BPDCN samples. WES revealed 37–99 deleterious gene mutations per exome with no common affected genes between patients, but with clear overlap in terms of molecular and disease pathways (hematological and dermatological disease). We identified for the first time deleterious mutations in IKZF3, HOXB9, UBE2G2 and ZEB2 in human leukemia. Target sequencing identified 29 recurring genes, ranging in prevalence from 36% for previously known genes, such as TET2, to 12–16% for newly identified genes, such as IKZF3 or ZEB2. Half of the tumors had mutations affecting either the DNA methylation or chromatin remodeling pathways. The clinical analysis revealed that patients with mutations in DNA methylation pathway had a significantly reduced overall survival (P=0.047). We provide the first mutational profiling of BPDCN. The data support the current WHO classification of the disease as a myeloid disorder and provide a biological rationale for the incorporation of epigenetic therapies for its treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  Google Scholar 

  2. Herling M, Jones D . CD4+/CD56+ hematodermic tumor: the features of an evolving entity and its relationship to dendritic cells. Am J Clin Pathol 2007; 127: 687–700.

    Article  Google Scholar 

  3. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768–3785.

    Article  CAS  Google Scholar 

  4. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5: 919–923.

    Article  CAS  Google Scholar 

  5. Chaperot L, Bendriss N, Manches O, Gressin R, Maynadie M, Trimoreau F et al. Identification of a leukemic counterpart of the plasmacytoid dendritic cells. Blood 2001; 97: 3210–3217.

    Article  CAS  Google Scholar 

  6. Petrella T, Comeau MR, Maynadie M, Couillault G, De Muret A, Maliszewski CR et al. 'Agranular CD4+ CD56+ hematodermic neoplasm' (blastic NK-cell lymphoma) originates from a population of CD56+ precursor cells related to plasmacytoid monocytes. Am J Surg Pathol 2002; 26: 852–862.

    Article  Google Scholar 

  7. Pilichowska ME, Fleming MD, Pinkus JL, Pinkus GS . CD4+/CD56+ hematodermic neoplasm ("blastic natural killer cell lymphoma"): neoplastic cells express the immature dendritic cell marker BDCA-2 and produce interferon. Am J Clin Pathol 2007; 128: 445–453.

    Article  CAS  Google Scholar 

  8. Feuillard J, Jacob MC, Valensi F, Maynadie M, Gressin R, Chaperot L et al. Clinical and biologic features of CD4(+)CD56(+) malignancies. Blood 2002; 99: 1556–1563.

    Article  CAS  Google Scholar 

  9. Petrella T, Bagot M, Willemze R, Beylot-Barry M, Vergier B, Delaunay M et al. Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms): a review. Am J Clin Pathol 2005; 123: 662–675.

    Article  Google Scholar 

  10. Reichard KK, Burks EJ, Foucar MK, Wilson CS, Viswanatha DS, Hozier JC et al. CD4(+) CD56(+) lineage-negative malignancies are rare tumors of plasmacytoid dendritic cells. Am J Surg Pathol 2005; 29: 1274–1283.

    Article  Google Scholar 

  11. Lee JK, Schiller G . Blastic plasmacytoid dendritic cell neoplasm. Clin Adv Hematol Oncol 2013; 10: 60–62.

    Google Scholar 

  12. Marafioti T, Paterson JC, Ballabio E, Reichard KK, Tedoldi S, Hollowood K et al. Novel markers of normal and neoplastic human plasmacytoid dendritic cells. Blood 2008; 111: 3778–3792.

    Article  CAS  Google Scholar 

  13. Montes-Moreno S, Ramos-Medina R, Martinez-Lopez A, Barrionuevo Cornejo C, Parra Cubillos A, Quintana-Truyenque S et al. SPIB, a novel immunohistochemical marker for human blastic plasmacytoid dendritic cell neoplasms: characterization of its expression in major hematolymphoid neoplasms. Blood 2013; 121: 643–647.

    Article  CAS  Google Scholar 

  14. Lucioni M, Novara F, Fiandrino G, Riboni R, Fanoni D, Arra M et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood 2011; 118: 4591–4594.

    Article  CAS  Google Scholar 

  15. Jardin F, Ruminy P, Parmentier F, Troussard X, Vaida I, Stamatoullas A et al. TET2 and TP53 mutations are frequently observed in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol 2011; 153: 413–416.

    Article  CAS  Google Scholar 

  16. Reimer P, Rudiger T, Kraemer D, Kunzmann V, Weissinger F, Zettl A et al. What is CD4+CD56+ malignancy and how should it be treated? Bone Marrow Transplant 2003; 32: 637–646.

    Article  CAS  Google Scholar 

  17. Assaf C, Gellrich S, Whittaker S, Robson A, Cerroni L, Massone C et al. CD56-positive haematological neoplasms of the skin: a multicentre study of the Cutaneous Lymphoma Project Group of the European Organisation for Research and Treatment of Cancer. J Clin Pathol 2007; 60: 981–989.

    Article  Google Scholar 

  18. Dalle S, Beylot-Barry M, Bagot M, Lipsker D, Machet L, Joly P et al. Blastic plasmacytoid dendritic cell neoplasm: is transplantation the treatment of choice? Br J Dermatol 2010; 162: 74–79.

    Article  CAS  Google Scholar 

  19. Roos-Weil D, Dietrich S, Boumendil A, Polge E, Bron D, Carreras E et al. Stem cell transplantation can provide durable disease control in blastic plasmacytoid dendritic cell neoplasm: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood 2013; 121: 440–446.

    Article  CAS  Google Scholar 

  20. Rubio-Camarillo M, Gomez-Lopez G, Fernandez JM, Valencia A, Pisano DG . RUbioSeq: a suite of parallelized pipelines to automate exome variation and bisulfite-seq analyses. Bioinformatics 2013; 29: 1687–1989.

    Article  CAS  Google Scholar 

  21. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  Google Scholar 

  22. Homer N, Merriman B, Nelson SF . BFAST: an alignment tool for large scale genome resequencing. PLoS One 2009; 4: e7767.

    Article  Google Scholar 

  23. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  Google Scholar 

  24. Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330: 228–231.

    Article  CAS  Google Scholar 

  25. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F . Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010; 26: 2069–2070.

    Article  CAS  Google Scholar 

  26. Fernandez-Mercado M, Yip BH, Pellagatti A, Davies C, Larrayoz MJ, Kondo T et al. Mutation patterns of 16 genes in primary and secondary acute myeloid leukemia (AML) with normal cytogenetics. PLoS One 2012; 7: e42334.

    Article  CAS  Google Scholar 

  27. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  28. Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 2010; 70: 447–452.

    Article  CAS  Google Scholar 

  29. Tefferi A . Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24: 1128–1138.

    Article  CAS  Google Scholar 

  30. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  Google Scholar 

  31. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  32. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 2013; 45: 242–252.

    Article  CAS  Google Scholar 

  33. Caudell D, Harper DP, Novak RL, Pierce RM, Slape C, Wolff L et al. Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice. Blood 2010; 115: 1194–1203.

    Article  CAS  Google Scholar 

  34. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  Google Scholar 

  35. Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2011; 29: 1373–1381.

    Article  Google Scholar 

  36. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496–2506.

    Article  CAS  Google Scholar 

  37. Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009; 23: 905–911.

    Article  CAS  Google Scholar 

  38. Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE . The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 2010; 116: 2779–2782.

    Article  CAS  Google Scholar 

  39. Green CL, Evans CM, Zhao L, Hills RK, Burnett AK, Linch DC et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood 2011; 118: 409–412.

    CAS  Google Scholar 

  40. Tefferi A, Jimma T, Sulai NH, Lasho TL, Finke CM, Knudson RA et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia 2012; 26: 475–480.

    Article  CAS  Google Scholar 

  41. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  Google Scholar 

  42. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43: 309–315.

    Article  CAS  Google Scholar 

  43. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    Article  CAS  Google Scholar 

  44. James LI, Frye SV . Targeting chromatin readers. Clin Pharmacol Ther 2013; 93: 312–314.

    Article  CAS  Google Scholar 

  45. Burridge S . Target watch: drugging the epigenome. Nat Rev Drug Discov 2013; 12: 92–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the co-workers in our laboratory for their excellent technical assistance. We especially thank the help of Manuel Morente and their team from the Tumour Bank Unit, Spanish National Cancer Research Centre. This work was supported in part by grants INTRASALUD PI12/0425 and Red Temática de Investigación Cooperativa en Cáncer (RTICC) RD12/0036/0037 to JCC from Instituto de Salud Carlos III and Ministerio de Economia y Competitividad; and INTRASALUD PI12/01047 to JVC. JM is recipient of a La Caixa International PhD Fellowship.

Author contributions

JM designed and performed the research, analyzed and interpreted the data, and wrote the manuscript. FA and MW performed the targeted next-generation sequencing and sequence data analysis. GGL and DGP performed the analysis of sequence data for whole-exome sequencing. RNS and SA analyzed and interpreted the data. MJL performed the FLT3-ITD screening. JGTC, IB, JVC, SMM, MAP, JMH, RA, MJC, LFB and MGV reviewed the pathologic data and confirmed the diagnosis. JCC designed and directed the research and revised the manuscript, which all authors have approved.

URLS

FastQC: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/; VEP: http://www.ensembl.org/tools.html; SIFT: http://sift-jcvi.org; PolyPhen-2: http://genetics.bwh.harvard.edu/pph2/index.shtml; SureDesign Tool: https://earray.chem.agilent.com/suredesign/; SRA database: http://www.ncbi.nlm.nih.gov/sra; IPA: http://www.ingenuity.com/products/ipa; Circos: http://circos.ca/.

Accession codes

Next-generation sequences have been deposited in the NCBI Sequence Read Archive (SRA), pending accession details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Cigudosa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, J., Acquadro, F., Wiseman, M. et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia 28, 823–829 (2014). https://doi.org/10.1038/leu.2013.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.283

Keywords

This article is cited by

Search

Quick links