Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Novel myelofibrosis treatment strategies: potential partners for combination therapies

Abstract

Of the myeloproliferative neoplasms (MPNs), myelofibrosis (MF) is associated with the greatest symptom burden and poorest prognosis and is characterized by constitutional symptoms, cytopenias, splenomegaly and bone marrow fibrosis. A hallmark of MF is dysregulation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway that has led to the development of JAK inhibitors targeting this pathway. Calreticulin gene mutations have recently been identified in JAK2 mutation-negative patients with MF. Identification of JAK inhibitor resistance and broad contributions to MF disease pathogenesis from epigenetic deregulators, pathways that work in concert with JAK/STAT (that is, mammalian target of rapamycin/AKT/phosphoinositide 3-kinase, RAS/RAF/MEK, PIM kinase), fibrosis-promoting factors and the MF megakaryocyte, suggest that numerous options may be partnered with a JAK inhibitor. Therefore, we will discuss logical and potential partners for combination therapies for the treatment of patients with MF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mesa RA, Green A, Barosi G, Verstovsek S, Vardiman J, Gale RP . MPN-associated myelofibrosis (MPN-MF). Leuk Res 2011; 35: 12–13.

    Article  CAS  Google Scholar 

  2. Mesa RA, Kiladjian JJ, Verstovsek S, Al-Ali HK, Gotlib JR, Gisslinger H et al. Comparison of placebo and best available therapy for the treatment of myelofibrosis in the phase 3 COMFORT studies. Haematologica 2013; 99: 292–298.

    Article  Google Scholar 

  3. Tefferi A . How I treat myelofibrosis. Blood 2011; 117: 3494–3504.

    Article  CAS  Google Scholar 

  4. Alchalby H, Badbaran A, Zabelina T, Kobbe G, Hahn J, Wolff D et al. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood 2010; 116: 3572–3581.

    Article  CAS  Google Scholar 

  5. Gupta V, Hari P, Hoffman R . Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood 2012; 120: 1367–1379.

    Article  CAS  Google Scholar 

  6. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  7. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  8. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    CAS  Google Scholar 

  9. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    CAS  Google Scholar 

  10. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Article  CAS  Google Scholar 

  11. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

    Article  CAS  Google Scholar 

  12. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28: 1472–1477.

    Article  CAS  Google Scholar 

  13. Passamonti F, Caramazza D, Maffioli M . JAK inhibitor in CALR-mutant myelofibrosis. N Engl J Med 2014; 370: 1168–1169.

    Article  CAS  Google Scholar 

  14. Garber K . JAK2 inhibitors: not the next imatinib but researchers see other possibilities. J Natl Cancer Inst 2009; 101: 980–982.

    Article  Google Scholar 

  15. Bhagwat N, Koppikar P, Keller M, Marubayashi S, Shank K, Rampal R et al. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood 2014; 123: 2075–2083.

    Article  CAS  Google Scholar 

  16. Cervantes F, Alvarez-Larran A, Domingo A, Arellano-Rodrigo E, Montserrat E . Efficacy and tolerability of danazol as a treatment for the anaemia of myelofibrosis with myeloid metaplasia: long-term results in 30 patients. Br J Haematol 2005; 129: 771–775.

    Article  CAS  Google Scholar 

  17. Shimoda K, Shide K, Kamezaki K, Okamura T, Harada N, Kinukawa N et al. The effect of anabolic steroids on anemia in myelofibrosis with myeloid metaplasia: retrospective analysis of 39 patients in Japan. Int J Hematol 2007; 85: 338–343.

    Article  CAS  Google Scholar 

  18. Thapaliya P, Tefferi A, Pardanani A, Steensma DP, Camoriano J, Wu W et al. International working group for myelofibrosis research and treatment response assessment and long-term follow-up of 50 myelofibrosis patients treated with thalidomide-prednisone based regimens. Am J Hematol 2011; 86: 96–98.

    Article  CAS  Google Scholar 

  19. Mesa RA, Yao X, Cripe LD, Li CY, Litzow M, Paietta E et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase-2 trial E4903. Blood 2010; 116: 4436–4438.

    Article  CAS  Google Scholar 

  20. Tefferi A, Lasho TL, Mesa RA, Pardanani A, Ketterling RP, Hanson CA . Lenalidomide therapy in del(5)(q31)-associated myelofibrosis: cytogenetic and JAK2V617F molecular remissions. Leukemia 2007; 21: 1827–1828.

    Article  CAS  Google Scholar 

  21. Jabbour E, Thomas D, Kantarjian H, Zhou L, Pierce S, Cortes J et al. Comparison of thalidomide and lenalidomide as therapy for myelofibrosis. Blood 2011; 118: 899–902.

    Article  CAS  Google Scholar 

  22. Tefferi A, Passamonti F, Barbui T, Barosi G, Begna K, Cazzola M et al. Phase 3 study of pomalidomide in myeloproliferative neoplasm (MPN)-associated myelofibrosis with RBC-transfusion-dependence. Blood 2013; 122, abstract 394.

  23. Kiladjian JJ, Chomienne C, Fenaux P . Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia 2008; 22: 1990–1998.

    Article  CAS  Google Scholar 

  24. Ianotto JC, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, Demory JL et al. Efficacy and safety of pegylated-interferon alpha-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol 2013; 162: 783–791.

    Article  CAS  Google Scholar 

  25. Silver RT, Lascu E, Feldman EJ, Ritchie E, Roboz GJ, De Sancho MT et al. Recombinant interferon alpha (rIFN) may retard progression of early myelofibrosis by reducing splenomegaly and by decreasing marrow fibrosis. Blood 2013; 122, abstract 4053.

  26. Hasselbalch HC . Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Rev Hematol 2014; 7: 203–216.

    Article  CAS  Google Scholar 

  27. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27: 1861–1869.

    Article  CAS  Google Scholar 

  28. Vannucchi AM, Biamonte F . Epigenetics and mutations in chronic myeloproliferative neoplasms. Haematologica 2011; 96: 1398–1402.

    CAS  Google Scholar 

  29. Abdel-Wahab O, Pardanani A, Bernard OA, Finazzi G, Crispino JD, Gisslinger H et al. Unraveling the genetic underpinnings of myeloproliferative neoplasms and understanding their effect on disease course and response to therapy: proceedings from the 6th International Post-ASH Symposium. Am J Hematol 2012; 87: 562–568.

    Article  Google Scholar 

  30. Mascarenhas J, Lu M, Li T, Petersen B, Hochman T, Najfeld V et al. A phase I study of panobinostat (LBH589) in patients with primary myelofibrosis (PMF) and post-polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF). Br J Haematol 2013; 161: 68–75.

    Article  CAS  Google Scholar 

  31. DeAngelo DJ, Mesa RA, Fiskus W, Tefferi A, Paley C, Wadleigh M et al. Phase II trial of panobinostat, an oral pan-deacetylase inhibitor in patients with primary myelofibrosis, post-essential thrombocythaemia, and post-polycythaemia vera myelofibrosis. Br J Haematol 2013; 162: 326–335.

    Article  CAS  Google Scholar 

  32. Wang Y, Fiskus W, Chong DG, Buckley KM, Natarajan K, Rao R et al. Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 2009; 114: 5024–5033.

    Article  CAS  Google Scholar 

  33. Baffert F, Evrot E, Ebel N, Rowlli C, Andraos R, Qian Z et al. Improved efficacy upon combined JAK1/2 and pan-deacetylase inhibition using ruxolitinib (INC424) and panobinostat (LBH589) in preclinical mouse models of JAK2 V617F-driven disease. Blood 2011; 118, abstract 798.

  34. Ribrag V, Harrison CN, Heidel FH, Kiladjian J, Acharyya S, Mu S et al. A phase Ib, dose-finding study of ruxolitinib plus panobinostat in patients with primary myelofibrosis (PMF), post–polycythemia vera mf (PPV-MF), or post–essential thrombocythemia mf (PET-MF): identification of the recommended phase II dose. Blood 2013; 122, abstract 4045.

  35. Rambaldi A, Dellacasa CM, Finazzi G, Carobbio A, Ferrari ML, Guglielmelli P et al. A pilot study of the Histone-Deacetylase inhibitor Givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol 2010; 150: 446–455.

    CAS  Google Scholar 

  36. Andersen C, Mortensen N, Vestergaard H, Bjerrum O, Klausen THasselbalch H . A phase II study of vorinostat (MK-0683) in patients with primary myelofibrosis (PMF) and post-polycythemia vera myelofibrosis (PPV-MF). Haematologica 2013; 98, abstract P279.

  37. Quintas-Cardama A, Kantarjian H, Estrov Z, Borthakur G, Cortes J, Verstovsek S . Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leuk Res 2012; 36: 1124–1127.

    Article  CAS  Google Scholar 

  38. Quintas-Cardama A, Tong W, Kantarjian H, Thomas D, Ravandi F, Kornblau S et al. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia 2008; 22: 965–970.

    Article  CAS  Google Scholar 

  39. Mesa RA, Verstovsek S, Rivera C, Pardanani A, Hussein K, Lasho T et al. 5-Azacitidine has limited therapeutic activity in myelofibrosis. Leukemia 2009; 23: 180–182.

    Article  CAS  Google Scholar 

  40. Thepot S, Itzykson R, Seegers V, Raffoux E, Quesnel B, Chait Y et al. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood 2010; 116: 3735–3742.

    Article  CAS  Google Scholar 

  41. Odenike O, Godwin J, van Besien K, Huo D, Sher D, Burke P et al. Phase II trial of low dose, subcutaneous decitabine in myelofibrosis. Blood 2008; 112, abstract 2809.

  42. Jhaveri K, Modi S . HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol 2012; 65: 471–517.

    Article  CAS  Google Scholar 

  43. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 2012; 489: 155–159.

    Article  CAS  Google Scholar 

  44. Marubayashi S, Koppikar P, Taldone T, Abdel-Wahab O, West N, Bhagwat N et al. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J Clin Invest 2010; 120: 3578–3593.

    Article  CAS  Google Scholar 

  45. Bareng J, Jilani I, Gorre M, Kantarjian H, Giles F, Hannah A et al. A potential role for HSP90 inhibitors in the treatment of JAK2 mutant-positive diseases as demonstrated using quantitative flow cytometry. Leuk Lymphoma 2007; 48: 2189–2195.

    Article  CAS  Google Scholar 

  46. Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med 2012; 209: 259–273.

    Article  CAS  Google Scholar 

  47. Proia DA, Foley KP, Korbut T, Sang J, Smith D, Bates RC et al. Multifaceted intervention by the Hsp90 inhibitor ganetespib (STA-9090) in cancer cells with activated JAK/STAT signaling. PLoS One 2011; 6: e18552.

    Article  CAS  Google Scholar 

  48. Fiskus W, Verstovsek S, Manshouri T, Rao R, Balusu R, Venkannagari S et al. Heat shock protein 90 inhibitor is synergistic with JAK2 inhibitor and overcomes resistance to JAK2-TKI in human myeloproliferative neoplasm cells. Clin Cancer Res 2011; 17: 7347–7358.

    Article  CAS  Google Scholar 

  49. Merchant AA, Matsui W . Targeting Hedgehog — a cancer stem cell pathway. Clin Cancer Res 2010; 16: 3130–3140.

    Article  CAS  Google Scholar 

  50. Irvine DA, Copland M . Targeting hedgehog in hematologic malignancy. Blood 2012; 119: 2196–2204.

    Article  CAS  Google Scholar 

  51. Fiskus W, Ganguly S, Kambhampati S, Bhalla KN . Role of additional novel therapies in myeloproliferative neoplasms. Hematol Oncol Clin North Am 2012; 26: 959–980.

    Article  Google Scholar 

  52. Jamieson C, Cortes JE, Oehler V, Baccarani M, Kantarjian HM, Papayannidis C et al. Phase 1 dose-escalation study of PF-04449913, an oral hedgehog (Hh) inhibitor, in patients with select hematologic malignancies. Blood 2011; 118, abstract 424.

  53. Bhagwat N, Keller MD, Rampal R, Koppikar P, Shank K, De Stanchina E et al. Improved efficacy of combination of JAK2 and hedgehog inhibitors in myelofibrosis. Blood 2013; 122, abstract 666.

  54. Guglielmelli P, Barosi G, Rambaldi A, Marchioli R, Masciulli A, Tozzi L et al. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood 2011; 118: 2069–2076.

    Article  CAS  Google Scholar 

  55. Vannucchi AM, Bogani C, Bartalucci N, Guglielmelli P, Tozzi L, Antonioli E et al. The mTOR inhibitor, RAD001, inhibits the growth of cells from patients with myeloproliferative neoplasms. Blood 2009; 114, abstract 2914.

  56. Vannucchi A, Bogani C, Bartalucci N, Tozzi L, Martinelli S, Guglielmelli P et al. Inhibitors of PI3K/Akt and/or mTOR inhibit the growth of cells of myeloproliferative neoplasms and synergize with JAK2 inhibitor and interferon. Blood 2011; 118, abstract 3835.

  57. Fiskus W, Verstovsek S, Manshouri T, Smith JE, Peth K, Abhyankar S et al. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther 2013; 12: 577–588.

    Article  CAS  Google Scholar 

  58. Khan I, Huang Z, Wen Q, Stankiewicz MJ, Gilles L, Goldenson B et al. AKT is a therapeutic target in myeloproliferative neoplasms. Leukemia 2013; 27: 1882–1890.

    Article  CAS  Google Scholar 

  59. Santarpia L, Lippman SM, El-Naggar AK . Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16: 103–119.

    Article  CAS  Google Scholar 

  60. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    Article  CAS  Google Scholar 

  61. McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Basecke J et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22: 708–722.

    Article  CAS  Google Scholar 

  62. Oku S, Takenaka K, Kuriyama T, Shide K, Kumano T, Kikushige Y et al. JAK2 V617F uses distinct signalling pathways to induce cell proliferation and neutrophil activation. Br J Haematol 2010; 150: 334–344.

    Article  CAS  Google Scholar 

  63. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J . PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95: 1004–1015.

    Article  CAS  Google Scholar 

  64. Lin YW, Beharry ZM, Hill EG, Song JH, Wang W, Xia Z et al. A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood 2010; 115: 824–833.

    Article  CAS  Google Scholar 

  65. Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB . Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 2005; 105: 4477–4483.

    Article  CAS  Google Scholar 

  66. Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE et al. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 2008; 111: 3751–3759.

    Article  CAS  Google Scholar 

  67. Fiskus W, Manepalli RR, Balusu R, Bhalla KN . Synergistic activity of combinations of JAK2 kinase inhibitor with PI3K/mTOR, MEK or PIM kinase inhibitor against human myeloproliferative neoplasm cells expressing JAK2V617F. Blood 2010; 116, abstract 798.

  68. Saci A, Pinzon-Ortiz M, Wang D, Rong X, Growney J, Squier P et al. The combination of JAK inhibitor, ruxolitinib, and PIM inhibitor, LGH447, in preclinical models of myeloproliferative neoplasia. Blood 2013; 122, abstract 4100.

  69. Papadantonakis N, Matsuura S, Ravid K . Megakaryocyte pathology and bone marrow fibrosis: the lysyl oxidase connection. Blood 2012; 120: 1774–1781.

    Article  CAS  Google Scholar 

  70. Dillingh MR, van den Blink B, Moerland M, van Dongen MG, Levi M, Kleinjan A et al. Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther 2013; 26: 672–676.

    Article  CAS  Google Scholar 

  71. Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell 2012; 150: 575–589.

    Article  CAS  Google Scholar 

  72. Goldenson B, Malinge S, Stein BL, Lasho TL, Breyfogle L, Schultz R et al. Aurora A kinase is a novel therapeutic target in the myeloproliferative neoplasms. Blood 2013; 122: 109–109.

    Article  Google Scholar 

  73. Friedberg JW, Mahadevan D, Cebula E, Persky D, Lossos I, Agarwal AB et al. Phase II study of alisertib, a selective Aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas. J Clin Oncol 2014; 32: 44–50.

    Article  CAS  Google Scholar 

  74. McMullin MF, Harrison CN, Niederwieser D, Demuynck H, Jakel N, Sirulnik A et al. The use of erythropoietic-stimulating agents (ESAs) with ruxolitinib in patients with primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (PPV-MF), and post-essential thrombocythemia myelofibrosis (PET-MF). Blood 2012; 120, abstract 2838.

  75. Stübig T, Alchalby H, Ditschkowski M, Wolf D, Wulf G, Zabelina T et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia 2014; e-pub ahead of print 26 February 2014; doi:10.1038/leu.2014.86.

    Article  Google Scholar 

  76. Jaekel N, Behre G, Behning A, Wickenhauser C, Lange T, Niederwieser D et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant 2014; 49: 179–184.

    Article  CAS  Google Scholar 

  77. Tefferi A, Begna K, Laborde RR, Patnaik MM, Lasho TL, Zblewski D et al. Imetelstat, a telomerase inhibitor, induces morphologic and molecular remissions in myelofibrosis and reversal of bone marrow fibrosis. Blood 2013; 122, abstract 662.

  78. Lasho TL, Jimma T, Finke CM, Patnaik M, Hanson CA, Ketterling RP et al. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood 2012; 120: 4168–4171.

    Article  CAS  Google Scholar 

  79. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.

    Article  CAS  Google Scholar 

  80. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    Article  CAS  Google Scholar 

  81. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363: 1117–1127.

    Article  CAS  Google Scholar 

  82. Pardanani A, Gotlib J, Gupta V, Roberts AW, Wadleigh M, Sirhan S et al. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 inhibitor, for the treatment of myelofibrosis. Blood 2013; 122: abstract 108.

    Google Scholar 

  83. Pardanani A, Gotlib J, Gupta V, Roberts AW, Wadleigh M, Sirhan S et al. An expanded multicenter phase I/II study of CYT387, a JAK-1/2 inhibitor for the treatment of myelofibrosis. Blood 2011; 118: 1645–1646, (abstract 3849).

    Google Scholar 

  84. Pardanani AD, Caramazza D, George G, Lasho TL, Hogan WJ, Litzow MR et al. Safety and efficacy of CYT387, a JAK-1/2 inhibitor for the treatment of myelofibrosis. J Clin Oncol 2011; 29 (Suppl): abstract 6514.

    Article  Google Scholar 

  85. Pardanani A, Harrison CN, Cortes JE, Cervantes F . Results of a randomized, double-blind, placebo-controlled phase III study (JAKARTA) of the JAK2-selective inhibitor fedratinib (SAR302503) in patients with myelofibrosis. Blood 2013; 122: abstract 393.

    Google Scholar 

  86. Pardanani A, Gotlib J, Jamieson C, Cortes JE, Talpaz M, Stone R et al. SAR302503: interim safety, efficacy and long-term impact on JAK2 V617F allele burden in a phase I/II study in patients with myelofibrosis. Blood 2011; 118: abstract 3838.

    Google Scholar 

  87. Gotlib J, Pardanani A, Jamieson C, Cortes J, Talpaz M, Stone R et al. Long-term follow up of a phase 1/2 study of SAR302503, an oral JAK2 selective inhibitor, in patients with myelofibrosis (MF). Haematologica 2012; 97 (s1): 145 (abstract 0361).

    Google Scholar 

  88. Komrokji RS, Wadleigh M, Seymour JF, Roberts AW, To LB, Zhu HJ et al. Results of a phase 2 study of pacritinib (SB1518), a novel oral JAK2 inhibitor, in patients with primary, post-polycythemia vera, and post-essential thrombocythemia myelofibrosis. Blood 2011; 118: 130 (abstract 282).

    Google Scholar 

  89. Verstovsek S, Dean JP, Cernohous P, Komrokji RS, Seymour JF, Mesa RA et al. Pacritinib, a dual JAK2/FLT3 inhibitor: an integrated efficacy and safety analysis of phase II trial data in patients with primary and secondary myelofibrosis (MF) and platelet counts ≤100,000/μl. Blood 2013; 122: abstract 395.

    Google Scholar 

  90. Verstovsek S, Mesa RA, Salama ME, Giles JLK, Pitou C, Zimmermann AH et al. Phase I study of LY2784544, a JAK2 selective inhibitor, in patients with myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). Blood 2013; 122: abstract 665.

    Google Scholar 

  91. Pardanani A, Roberts AW, Seymour JF, Burbury K, Verstovsek S, Kantarjian HM et al. BMS-911543, a selective JAK2 inhibitor: a multicenter phase 1/2a study in myelofibrosis. Blood 2013; 122, abstract 664.

Download references

Acknowledgements

Financial support for medical assistance was provided by Novartis Pharmaceuticals. We thank Daniel Hutta and Matthew Hoelzle for their medical editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B L Stein.

Ethics declarations

Competing interests

BLS was previously a member of Speakers Bureau, Incyte Corporation and has participated in Advisory Boards for Incyte Corporation and Sanofi Oncology. RS has declared no conflict of interest. AH has received honoraria and research funding from Novartis, Bristol-Myers Squibb and Pfizer; and FG has received honoraria and research funding from Novartis.

Additional information

Authorship

All authors drafted and approved this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, B., Swords, R., Hochhaus, A. et al. Novel myelofibrosis treatment strategies: potential partners for combination therapies. Leukemia 28, 2139–2147 (2014). https://doi.org/10.1038/leu.2014.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.176

This article is cited by

Search

Quick links