Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Concise Review
  • Published:

Design of novel BH3 mimetics for the treatment of chronic lymphocytic leukemia

Abstract

Impaired programmed cell death is an important factor in the pathogenesis of chronic lymphocytic leukemia (CLL) and in the development of resistance to chemoimmunotherapy. Hence, the reactivation of apoptotic processes is likely to be a pertinent strategy for circumventing this resistance. Proteins from the Bcl-2 family are critical elements in defective apoptosis. Some compounds induce the apoptosis of CLL cells ex vivo by downregulation of prosurvival members of this family (for example, Bcl-2 and Mcl-1), whereas others act by upregulation of proapoptotic Bcl-2 homology (BH) 3-only members (for example, Noxa and Bim). The concept of BH3 mimetics was prompted by the fact that BH3-only proteins are specific antagonistic ligands of prosurvival Bcl-2 family members. This led to the design of small molecules capable of inhibiting the activity of prosurvival Bcl-2 proteins and inducing apoptosis in leukemia cells in vitro and antileukemic effects in animal models. Several putative or actual BH3 mimetics are currently being trialed in the clinic. Two novel BH3 mimetics that can specifically bind to and antagonize Mcl-1 (a crucial antiapoptotic factor in CLL) have recently been discovered. The evaluation of this type of compound’s clinical impact in CLL can now be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Tam CS, Keating MJ . Chemoimmunotherapy of chronic lymphocytic leukemia. Nat Rev Clin Oncol 2010; 7: 521–532.

    Article  CAS  PubMed  Google Scholar 

  2. Gribben JB, O’Brien S . Update on therapy of chronic lymphocytic leukemia. J Clin Oncol 2011; 29: 544–550.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hallek M . Therapy of chronic lymphocytic leukemia. Best Pract Res Clin Haematol 2010; 23: 85–96.

    Article  CAS  PubMed  Google Scholar 

  4. Pleyer L, Egle A, Hartmann TN, Greil R . Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nat Rev Clin Oncol 2009; 6: 405–418.

    Article  CAS  PubMed  Google Scholar 

  5. Kolb JP, Kern C, Quiney C, Roman V, Billard C . Re-establishment of a normal apoptotic process as a therapeutic approach in B-CLL. Curr Drug Targets Cardiovasc Hematol Disord 2003; 3: 261–286.

    Article  CAS  Google Scholar 

  6. Chen L, Balakrishnan K, Gandhi V . Inflammation and survival pathways: chronic lymphocytic leukemia as a model system. Biochem Pharmacol 2010; 80: 1936–1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Packham G, Stevenson FK . Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukemia. Immunology 2005; 114: 441–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Adams JM, Cory S . The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJS et al. Cocurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 2009; 113: 4403–4413.

    Article  CAS  PubMed  Google Scholar 

  12. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  13. Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112: 3807–3817.

    Article  CAS  PubMed  Google Scholar 

  14. Awan FT, Kay NE, Davies ME, Wu W, Geyer SM, Leung N et al. Mcl-1 expression predicts progression-free survival in chronic lymphocytic leukemia patients treated with pentostatin, cyclophosphomide, and rituximab. Blood 2009; 133: 535–537.

    Article  Google Scholar 

  15. Hussain SR, Cheney CM, Johnson AJ, Lin TS, Grever MR, Caligiuri MA et al. Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: Downregulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res 2007; 13: 144–150.

    Article  Google Scholar 

  16. Byrd JC, Shinn C, Waselenko JK, Fuchs EJ, Lehman TA, Nguyen PL et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood 1998; 92: 3804–3816.

    CAS  PubMed  Google Scholar 

  17. Balakrishnan K, Wierda WG, Keating MJ, Gossypol Gandhi V . a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia. Blood 2008; 117: 1971–1980.

    Article  Google Scholar 

  18. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE . VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 2004; 104: 788–794.

    Article  CAS  PubMed  Google Scholar 

  19. Kress CL, Konopleva M, Martinez-Garcia V, Krajewsla M, Lefebvre S, Hyer M et al. Triterpenoids display single agent anti-tumor activity in a transgenic mouse model of chronic lymphocytic leukemia and small B cell lymphoma. PLoS One 2007; 2: e559.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Menasria F, Azebaze AG, Billard C, Faussat AM, Nkengfack AE, Meyer M et al. Apoptotic effects on B-cell chronic lymphocytic leukemia (B-CLL) cells of heterocyclic compounds isolated from Guttiferaes. Leuk Res 2008; 32: 1914–1926.

    Article  CAS  PubMed  Google Scholar 

  21. Billard C, Menasria F, Quiney C, Faussat AM, Finet JP, Combes S et al. 4-arylcoumarin analogues of combretastatins stimulate the apoptosis of leukemic cells from chronic lymphocytic leukemia patients. Exp Hematol 2008; 36: 1625–1633.

    Article  CAS  PubMed  Google Scholar 

  22. Quiney C, Billard C, Faussat AM, Salanoubat C, Ensaf A, Naït-Si Y et al. Pro-apoptotic properties of hyperforin in leukemic cells from patients with chronic lymphocytic leukemia. Leukemia 2006; 20: 491–497.

    Article  CAS  PubMed  Google Scholar 

  23. Pepper C, Thomas A, Hoy T, Cotter F, Bentley P . Antisense-mediated suppression of Bcl-2 highlights its pivotal role in failed apoptosis in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 107: 611–615.

    Article  CAS  PubMed  Google Scholar 

  24. Chen R, Plunkett W . Strategy to induce apoptosis and circumvent resistance in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2010; 23: 155–166.

    Article  CAS  PubMed  Google Scholar 

  25. Balakrishnan K, Burger JA, Wierda WG, Gandhi V . AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 2009; 113: 149–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue S, Walewska R, Dyer MJS, Cohen GM . Downregulation of Mcl-1 potentiates HDACi-mediated apoptosis in leukemic cells. Leukemia 2008; 2: 819–825.

    Article  Google Scholar 

  27. Santidrian AF, Gonzalez-Gironès DM, Iglesias-Serret D, Coll-Mulet L, Cosialls AM, de Frias M et al. AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells. Blood 2010; 116: 3023–3032.

    Article  CAS  PubMed  Google Scholar 

  28. Baou M, Kohlhaas SL, Butterworth M, Vogler M, Dinsdale B, Walewska R et al. Role of Noxa and its ubiquitination in proteasome inhibitor-induced apoptosis in chronic lymphocytic leukemia cells. Haematologica 2010; 95: 1510–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaher M, Tang R, Bombarda I, Merhi F, Bauvois B, Billard C . Hyperforin induces apoptosis of chronic lymphocytic leukemia cells through upregulation of the BH3-only ptotein Noxa. Int J Oncol 2012; 40: 269–276.

    CAS  PubMed  Google Scholar 

  30. Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Ping Dou Q . Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 2005; 69: 1421–1432.

    Article  CAS  PubMed  Google Scholar 

  31. Dai Y, DeSano J, Tang W, Meng X, Meng Y, Burstein E et al. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB. PLoS One 2010; 5: e14153.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mackus WJM, Kater AP, Grummels A, Evers ML, Hooijbrink B, Kramer MHH et al. Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation. Leukemia 2005; 19: 427–434.

    Article  CAS  PubMed  Google Scholar 

  33. Iglesias-Serret D, de Frias M, Santidrian AF, Coll-Mulet L, Cosialls AM, Barragan M et al. Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia 2007; 21: 281–287.

    Article  CAS  PubMed  Google Scholar 

  34. Flinn IW, Byrd JC, Bartlett N, Kipps T, Gribben J, Thomas D et al. Flavopiridol administered as a 24-h continuous infusion in chronic lymphocytic leukemia lacks clinical activity. Leuk Res 2005; 29: 1253–1257.

    Article  CAS  PubMed  Google Scholar 

  35. Lin TS, Ruppert AS, Johnson AJ, Fischer B, Heerema NA, Andritsos LA et al. Phase II study of flavopiridol in relapsed chronic lymphocytic leukemia demonstrating high response rates in genetically high-risk disease. J Clin Oncol 2009; 27: 6012–6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. James DF, Castro JE, Loria O, Prada CE, Aguillon RA, Kipps TJ . AT-101 a small Bcl-2 antagonist, in treatment naïve CLL patients with high risk features; preliminary results from an ongoing phase I trial. J Clin Oncol 2006; 24(No 18S): 6605.

    Google Scholar 

  37. Byrd JC, Marcucci G, Parthum MR, Xiao JJ, Klisovic RB, Moran M et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005; 105: 959–967.

    Article  CAS  PubMed  Google Scholar 

  38. Blum KA, Advani A, Fernandez L, Van Der Jagt R, Brandwein J, Kambhampati S et al. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukemia. Br J Haematol 2009; 147: 507–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Faderl S, Rai K, Gribben J, Byrd JC, Flinn IW, O’Brien S et al. Phase II study of single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell chronic lymphocytic leukemia. Cancer 2006; 107: 916–924.

    Article  CAS  PubMed  Google Scholar 

  40. Nencioni A, Hua F, Dillon CP, Yokoo R, Scheiermann C, Cardone MH et al. Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood 2005; 105: 3255–3262.

    Article  CAS  PubMed  Google Scholar 

  41. Loisel S, Le Ster K, Meyer M, Youinou P, Kolb JP, Billard C . Therapeutic activity of two xanthones in a xenograft murine model of human chronic lymphocytic leukemia. J Hematol Oncol 2010; 3: 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rothley M, Schmid A, Thiele W, Schacht V, Plaumann D, Gartner M et al. Hyperforin and aristoforin inhibit lymphatic endothelial cell proliferation in vitro and suppress tumor-induced lymphangiogenesis in vivo. Int J Cancer 2009; 125: 34–42.

    Article  CAS  PubMed  Google Scholar 

  43. O’Brien SM, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR . Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 7697–7702.

    Article  PubMed  Google Scholar 

  44. O’Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki AB, Koziner B et al. 5-Year survival in patients with relapsed or refractory chronic lymphocytic leukemia in a randomized, phase III trial of fludarabine plus cyclophosphamide with or without oblimersen. J Clin Oncol 2009; 27: 5208–5212.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marzo I, Naval J . Bcl-2 family members as molecular targets in cancer therapy. Biochem Pharmacol 2008; 76: 939–946.

    Article  CAS  PubMed  Google Scholar 

  46. Gautschi O, Tschopp S, Olie RA, Leech SH, Simoes-Würst AP, Ziegler A et al. Activity of a novelbcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 2001; 93: 463–471.

    Article  CAS  PubMed  Google Scholar 

  47. Thallinger C, Wolschek MF, Maierhofer H, Skvara H, Pehamberger H, Monia BP et al. Mcl-1 is a novel therapeutic target for human sarcoma: synergistic inhibition of human sarcoma xenotransplants by a combination of Mcl-1 antisense oligonucleotide with low-dose cyclophosphamide. Clin Cancer Res 2004; 10: 4185–4191.

    Article  CAS  PubMed  Google Scholar 

  48. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Snirivasula SM et al. Structure-based discovery of an organic compound that binds Bcl-2 proteins and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 2000; 97: 7124–7129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doshi JM, Tian D, Xing C . Ethyl-2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H- chromene-3-carboxylate (HA14-1), a prototype small-molecule antagonist against antiapoptoic Bcl-2 proteins, decomposes to generate reactive oxygen species that induce apoptosis. Mol Pharm 2007; 4: 919–928.

    Article  CAS  PubMed  Google Scholar 

  51. Baell JB . Huang DCS. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem Pharmacol 2002; 64: 851–863.

    Article  CAS  PubMed  Google Scholar 

  52. Wang JL, Zhang ZJ, Choksi S, Shan S, Lu Z, Croce CM et al. Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 2000; 60: 1498–1502.

    CAS  PubMed  Google Scholar 

  53. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD et al. Activation of apoptosis in vivo by an hydrocarbon-stapled BH3 helix. Science 2004; 305: 1466–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumors. Nature 2005; 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  55. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju ST et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 2007; 104: 19512–19517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schimmer AD, O’Brien S, Kantarjian H, Brandwein J, Cheson BD, Minden MD et al. A phase I study of the pan Bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14: 8295–8301.

    Article  CAS  PubMed  Google Scholar 

  57. Vogler M, Weber K, Dinsdale D, Schmitz I, Schulze-Osthoff K, Dyer MJS et al. Different forms of cell death induced by putative BCL2 inhibitors. Cell Death Diff 2009; 16: 1030–1039.

    Article  CAS  Google Scholar 

  58. Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120: 1310–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Albershardt TC, Salerni BL, Soderquist RS, Bates DJP, Pletnev AA, Kisselev AF et al. Multiple BH3 mimetics antagonize antiapoptotic MCL-1 protein by inducing the endoplasmic reticulum stress response and up-regulating BH3-only protein NOXA. J Biol Chem 2011; 286: 24882–24895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellachia M . Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem 2003; 46: 4259–4264.

    Article  CAS  PubMed  Google Scholar 

  61. Lian J . Karnak D, Xu L. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy 2010; 6: 1201–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mohammed RM, Goustin AS, Aboukameel A, Chen B, Banerjee S, Wang G et al. preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin Cancer Res 2007; 13: 2226–2235.

    Article  Google Scholar 

  63. Arnold AA, Aboukamel A, Chen J, Yang D, Wang S, Al-Katib A et al. Preclinical studies of apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in follicular small cleaved cell lymphoma model. Mol Cancer 2008; 7: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dash R, Azab B, Quinn BA, Shen X, Wang XY, Das SK et al. Apogossypol derivative BI-97C1 (Sabutoclax) targeting Mcl-1 sensitizes prostate cancer cells to mda-7/IL-24-mediated toxicity. Proc Natl Acad Sci USA 20011; 108: 8785–8790.

    Article  Google Scholar 

  65. Zhang Z, Song T, Zhang T, Gao J, Wu G, An L et al. A novel BH3 mimetic S1 potently induces Bax/Bak-dependent apoptosis by targeting both Bcl-2 and Mcl-1. Int J Cancer 2011; 128: 1724–1735.

    Article  CAS  PubMed  Google Scholar 

  66. Ghiotto F, Fais F, Tenca C, Tomati V, Morabito F, Casciaro S et al. Apoptosis of B-cell chronic lymphocytic leukemia cells induced by a novel BH3 peptidomimetic. Cancer Biol Ther 2009; 8: 263–271.

    Article  CAS  PubMed  Google Scholar 

  67. Lessene G, Czabotar PE, Colman PM . Bcl-2 family antagonists for cancer therapy. Nature Rev 2008; 7: 989–1000.

    CAS  Google Scholar 

  68. Khaw SL, Huang DCS, Roberts AW . Overcoming blocks in apoptosis with BH3-mimetic therapy in hematological malignancies. Pathology 2011; 43: 525–535.

    Article  CAS  PubMed  Google Scholar 

  69. O’Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 2009; 113: 299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP et al. Navitoclax, a targeted high-affinity inhibitor of Bcl-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumor activity. Lancet Oncol 2010; 11: 1149–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL et al. Substancial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012; 30: 488–496.

    Article  CAS  PubMed  Google Scholar 

  72. Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM et al. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. J Biol Chem 2009; 284: 30508–30515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shamas-Din A, Brambhatt H, Leber B, Andrews DW . BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta 2011; 1813: 508–520.

    Article  CAS  PubMed  Google Scholar 

  74. Lee EF, Czabotar PE, van Delft MF, Michalak EM, Boyle MJ, Willis SN et al. A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J Cell Biol 2008; 180: 341–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee EF, Federova A, Zobel K, Boyle MJ, Yang H, Perugini MA et al. Novel Bcl-2 homology-3 domain-like sequences identified from screening randomized peptide libraries for inhibitors of the pro-survival Bcl-2 proteins. J Biol Chem 2009; 284: 31315–31326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stewart ML, Fire E, Keating AE, Walensky LD . The MCL-1 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 2010; 6: 595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Billard.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billard, C. Design of novel BH3 mimetics for the treatment of chronic lymphocytic leukemia. Leukemia 26, 2032–2038 (2012). https://doi.org/10.1038/leu.2012.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.88

Keywords

This article is cited by

Search

Quick links