Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia

Abstract

Acute myeloid leukemia (AML) remains a therapeutic challenge despite increasing knowledge about the molecular origins of the disease, as the mechanisms of AML cell escape from chemotherapy remain poorly defined. We hypothesized that AML cells are addicted to molecular pathways in the context of chemotherapy and used complementary approaches to identify these addictions. Using novel molecular and computational approaches, we performed genome-wide short-hairpin RNA screens to identify proteins that mediate AML cell fate after cytarabine exposure; gene expression profiling of AML cells exposed to cytarabine to identify genes with induced expression in this context; and examination of existing gene expression data from primary patient samples. Integration of these independent analyses strongly implicates cell-cycle checkpoint proteins, particularly WEE1, as critical mediators of AML cell survival after cytarabine exposure. Knockdown of WEE1 in a secondary screen confirmed its role in AML cell survival. Pharmacologic inhibition of WEE1 in AML cell lines and primary cells is synergistic with cytarabine. Further experiments demonstrate that inhibition of WEE1 prevents S-phase arrest induced by cytarabine, broadening the functions of WEE1 that may be exploited therapeutically. These data highlight the power of integrating functional and descriptive genomics, and identify WEE1 as a potential therapeutic target in AML.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Deschler B, Lubbert M . Acute myeloid leukemia: epidemiology and etiology. Cancer 2006; 107: 2099–2107.

    Article  Google Scholar 

  2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ . Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29: 551–565.

    Article  Google Scholar 

  3. Gilliland DG, Tallman MS . Focus on acute leukemias. Cancer Cell 2002; 1: 417–420.

    Article  CAS  Google Scholar 

  4. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  Google Scholar 

  5. Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 2009; 361: 1249–1259.

    Article  CAS  Google Scholar 

  6. Burnett AK, Hills RK, Milligan DW, Goldstone AH, Prentice AG, McMullin MF et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 2010; 28: 586–595.

    Article  CAS  Google Scholar 

  7. Lange BJ, Smith FO, Feusner J, Barnard DR, Dinndorf P, Feig S et al. Outcomes in CCG-2961, a children's oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children's oncology group. Blood 2008; 111: 1044–1053.

    Article  CAS  Google Scholar 

  8. Lowenberg B, Pabst T, Vellenga E, van Putten W, Schouten HC, Graux C et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med 2011; 364: 1027–1036.

    Article  Google Scholar 

  9. Garcia-Carbonero R, Ryan DP, Chabner BA . Cytidine analogs. In: Chabner BA, Longo DL (ed). Cancer Chemotherapy and Biotherapy, Principles and Practice, 3rd edn. Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2001.

    Google Scholar 

  10. Kornblau SM, Qiu YH, Bekele BN, Cade JS, Zhou X, Harris D et al. Studying the right cell in acute myelogenous leukemia: dynamic changes of apoptosis and signal transduction pathway protein expression in chemotherapy resistant ex-vivo selected ‘survivor cells’. Cell Cycle 2006; 5: 2769–2777.

    Article  CAS  Google Scholar 

  11. Druker BJ . Translation of the Philadelphia chromosome into therapy for CML. Blood 2008; 112: 4808–4817.

    Article  CAS  Google Scholar 

  12. Gregory MA, Phang TL, Neviani P, Alvarez-Calderon F, Eide CA, O’Hare T et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell 2010; 18: 74–87.

    Article  CAS  Google Scholar 

  13. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009; 15: 328–340.

    Article  CAS  Google Scholar 

  14. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ et al. Cancer proliferation gene discovery through functional genomics. Science 2008; 319: 620–624.

    Article  CAS  Google Scholar 

  15. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009; 462: 108–112.

    Article  CAS  Google Scholar 

  16. Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 2009; 137: 821–834.

    Article  CAS  Google Scholar 

  17. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X et al. Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 2008; 105: 20380–20385.

    Article  CAS  Google Scholar 

  18. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 2009; 137: 835–848.

    Article  CAS  Google Scholar 

  19. Porter CC, DeGregori J . Interfering RNA-mediated purine analog resistance for in vitro and in vivo cell selection. Blood 2008; 112: 4466–4474.

    Article  CAS  Google Scholar 

  20. Robinson MD, McCarthy DJ, Smyth GK . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.

    Article  CAS  Google Scholar 

  21. He Z, Zhou J . Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis. Appl Environ Microbiol 2008; 74: 2957–2966.

    Article  CAS  Google Scholar 

  22. Rhodes DR, Anstett M . Data processing and normalization. 2010. https://support.oncomine.com (accessed on 4 April 2011).

  23. Rhodes DR, Anstett M . Computing fold change. 2010. https://support.oncomine.com (accessed on 4 April 2011).

  24. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  25. Li FX, Zhu JW, Hogan CJ, DeGregori J . Defective gene expression, S phase progression, and maturation during hematopoiesis in E2F1/E2F2 mutant mice. Mol Cell Biol 2003; 23: 3607–3622.

    Article  CAS  Google Scholar 

  26. Saldanha AJ . Java Treeview—extensible visualization of microarray data. Bioinformatics 2004; 20: 3246–3248.

    Article  CAS  Google Scholar 

  27. de Hoon MJ, Imoto S, Nolan J, Miyano S . Open source clustering software. Bioinformatics 2004; 20: 1453–1454.

    Article  CAS  Google Scholar 

  28. Drexler HG, Quentmeier H, MacLeod RA . Malignant hematopoietic cell lines: in vitro models for the study of MLL gene alterations. Leukemia 2004; 18: 227–232.

    Article  CAS  Google Scholar 

  29. Quentmeier H, Reinhardt J, Zaborski M, Drexler HG . FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003; 17: 120–124.

    Article  CAS  Google Scholar 

  30. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  Google Scholar 

  31. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  Google Scholar 

  32. Andersson A, Ritz C, Lindgren D, Eden P, Lassen C, Heldrup J et al. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia 2007; 21: 1198–1203.

    Article  CAS  Google Scholar 

  33. Stegmaier K, Ross KN, Colavito SA, O’Malley S, Stockwell BR, Golub TR . Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nat Genet 2004; 36: 257–263.

    Article  CAS  Google Scholar 

  34. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  Google Scholar 

  35. Parker LL, Piwnica-Worms H . Inactivation of the p34cdc2–cyclin B complex by the human WEE1 tyrosine kinase. Science 1992; 257: 1955–1957.

    Article  CAS  Google Scholar 

  36. Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 2009; 8: 2992–3000.

    Article  CAS  Google Scholar 

  37. Indovina P, Giordano A . Targeting the checkpoint kinase WEE1: selective sensitization of cancer cells to DNA-damaging drugs. Cancer Biol Ther 2010; 9: 523–525.

    Article  CAS  Google Scholar 

  38. Banker DE, Groudine M, Willman CL, Norwood T, Appelbaum FR . Cell cycle perturbations in acute myeloid leukemia samples following in vitro exposures to therapeutic agents. Leuk Res 1998; 22: 221–239.

    Article  CAS  Google Scholar 

  39. Vassin VM, Anantha RW, Sokolova E, Kanner S, Borowiec JA . Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J Cell Sci 2009; 122 (Part 22): 4070–4080.

    Article  CAS  Google Scholar 

  40. Fang F, Newport JW . Evidence that the G1–S and G2–M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 1991; 66: 731–742.

    Article  CAS  Google Scholar 

  41. Sebastian B, Kakizuka A, Hunter T . Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc Natl Acad Sci USA 1993; 90: 3521–3524.

    Article  CAS  Google Scholar 

  42. Gu Y, Rosenblatt J, Morgan DO . Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J 1992; 11: 3995–4005.

    Article  CAS  Google Scholar 

  43. Booher RN, Holman PS, Fattaey A . Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem 1997; 272: 22300–22306.

    Article  CAS  Google Scholar 

  44. Holzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H et al. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 2010; 142: 218–229.

    Article  Google Scholar 

  45. Hattori H, Zhang X, Jia Y, Subramanian KK, Jo H, Loison F et al. RNAi screen identifies UBE2D3 as a mediator of all-trans retinoic acid-induced cell growth arrest in human acute promyelocytic NB4 cells. Blood 2007; 110: 640–650.

    Article  CAS  Google Scholar 

  46. Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M et al. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood 2006; 107: 2517–2524.

    Article  CAS  Google Scholar 

  47. Liejen S, Schellens JH, Shapiro G, Pavlick AC, Tibes R, Demuth T et al. A phase I pharmacological and pharmacodynamic study of MK-1775, a Wee1 tyrosine kinase inhibitor, in monotherapy and combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol 2010; 28 Abstract: 15s.

    Google Scholar 

  48. McGowan CH, Russell P . Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 1993; 12: 75–85.

    Article  CAS  Google Scholar 

  49. Kiviharju-af Hallstrom TM, Jaamaa S, Monkkonen M, Peltonen K, Andersson LC, Medema RH et al. Human prostate epithelium lacks Wee1A-mediated DNA damage-induced checkpoint enforcement. Proc Natl Acad Sci USA 2007; 104: 7211–7216.

    Article  CAS  Google Scholar 

  50. Wroble BN, Finkielstein CV, Sible JC . Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis. BMC Dev Biol 2007; 7: 119.

    Article  Google Scholar 

  51. Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N, Maes S et al. The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress. Plant Cell 2011; 23: 1435–1448.

    Article  CAS  Google Scholar 

  52. Zhou BB, Bartek J . Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 2004; 4: 216–225.

    Article  CAS  Google Scholar 

  53. Wang Y, Decker SJ, Sebolt-Leopold J . Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 2004; 3: 305–313.

    Article  CAS  Google Scholar 

  54. Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N et al. MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 2010; 9: 514–522.

    Article  CAS  Google Scholar 

  55. Seliger B, Papadileris S, Vogel D, Hess G, Brendel C, Storkel S et al. Analysis of the p53 and MDM-2 gene in acute myeloid leukemia. Eur J Haematol 1996; 57: 230–240.

    Article  CAS  Google Scholar 

  56. Faderl S, Kantarjian HM, Estey E, Manshouri T, Chan CY, Rahman Elsaied A et al. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 2000; 89: 1976–1982.

    Article  CAS  Google Scholar 

  57. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass SA, Albitar M . The human MDM-2 oncogene is overexpressed in leukemias. Blood 1993; 82: 2617–2623.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Chris T Hittinger and Mark Johnston for input in assay design, and Dr Robert Sclafani for critical review of the manuscript. This work was supported by the Colorado Golfers Against Cancer and the AMC Cancer Fund (CCP, ACT, JD), the Leukemia and Lymphoma Society (JD, CCP), and the NCI through The University of Colorado Cancer Center (3P30CA046934-22S4; CCP).

AUTHOR CONTRIBUTIONS

CCP, SF, VZ, PP and AVL performed experiments. JK, DG and ACT developed the BINGS pipeline. CCP, JK, ACT, DG, CG and JD analyzed and interpreted data. CCP, ACT and JD wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C C Porter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, C., Kim, J., Fosmire, S. et al. Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia. Leukemia 26, 1266–1276 (2012). https://doi.org/10.1038/leu.2011.392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.392

Keywords

This article is cited by

Search

Quick links