Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia

Abstract

Translocations involving the mixed-lineage leukemia (MLL) gene, localized at 11q23, comprise 15 to 20% of all pediatric acute myeloid leukemia (AML) cases. This review summarizes current knowledge about the etiology, biology, clinical characteristics and differences in outcome in MLL-rearranged pediatric AML. Furthermore, we discuss the role of cooperating events in MLL-rearranged pediatric AML, and future therapeutic strategies to improve outcome. We conclude that MLL-rearranged pediatric AML is a heterogeneous disease, and prognosis depends on various factors, for example, translocation partner, age, WBC and additional cytogenetic aberrations. The relationship of outcome with specific translocation partners requires that they be searched for in the diagnostic work-up of AML. To achieve further improvements in outcome, unraveling the biology of MLL-rearranged pediatric AML is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Downing JR, Shannon KM . Acute leukemia: a pediatric perspective. Cancer Cell 2002; 2: 437–445.

    CAS  PubMed  Google Scholar 

  2. Kaspers GJ, Zwaan CM . Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 2007; 92: 1519–1532.

    PubMed  Google Scholar 

  3. Kaspers GJ, Creutzig U . Pediatric acute myeloid leukemia: international progress and future directions. Leukemia 2005; 19: 2025–2029.

    Article  CAS  PubMed  Google Scholar 

  4. Harrison CJ, Hills RK, Moorman AV, Grimwade DJ, Hann I, Webb DK et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol 2010; 28: 2674–2681.

    PubMed  Google Scholar 

  5. von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 2010; 28: 2682–2689.

    Article  CAS  PubMed  Google Scholar 

  6. Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009; 114: 2489–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA . A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet 1992; 2: 113–118.

    CAS  PubMed  Google Scholar 

  8. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708.

    CAS  PubMed  Google Scholar 

  9. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa III R, Patel Y, Harden A et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88: 10735–10739.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499.

    CAS  PubMed  Google Scholar 

  11. Caligiuri MA, Schichman SA, Strout MP, Mrozek K, Baer MR, Frankel SR et al. Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res 1994; 54: 370–373.

    CAS  PubMed  Google Scholar 

  12. Balgobind BV, Van den Heuvel-Eibrink MM, De Menezes RX, Reinhardt D, Hollink IH, Arentsen-Peters ST et al. Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica 2011; 96: 221–230.

    CAS  PubMed  Google Scholar 

  13. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  PubMed  Google Scholar 

  14. Burjanivova T, Madzo J, Muzikova K, Meyer C, Schneider B, Votava F et al. Prenatal origin of childhood AML occurs less frequently than in childhood ALL. BMC Cancer 2006; 6: 100.

    PubMed  PubMed Central  Google Scholar 

  15. Jones LK, Neat MJ, van Delft FW, Mitchell MP, Adamaki M, Stoneham SJ et al. Cryptic rearrangement involving MLL and AF10 occurring in utero. Leukemia 2003; 17: 1667–1669.

    CAS  PubMed  Google Scholar 

  16. Aplan PD . Chromosomal translocations involving the MLL gene: molecular mechanisms. DNA Repair (Amst) 2006; 5: 1265–1272.

    CAS  Google Scholar 

  17. Zandvliet DW, Hanby AM, Austin CA, Marsh KL, Clark IB, Wright NA et al. Analysis of foetal expression sites of human type II DNA topoisomerase alpha and beta mRNAs by in situ hybridisation. Biochim Biophys Acta 1996; 1307: 239–247.

    PubMed  Google Scholar 

  18. Ross JA . Dietary flavonoids and the MLL gene: a pathway to infant leukemia? Proc Natl Acad Sci USA 2000; 97: 4411–4413.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD . Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA 2000; 97: 4790–4795.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Spector LG, Davies SM, Robison LL, Hilden JM, Roesler M, Ross JA . Birth characteristics, maternal reproductive history, and the risk of infant leukemia: a report from the Children's Oncology Group. Cancer Epidemiol Biomarkers Prev 2007; 16: 128–134.

    PubMed  Google Scholar 

  21. Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera ME, Chan LC et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res 2001; 61: 2542–2546.

    CAS  PubMed  Google Scholar 

  22. Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 1993; 82: 3705–3711.

    CAS  PubMed  Google Scholar 

  23. Andersen MK, Johansson B, Larsen SO, Pedersen-Bjergaard J . Chromosomal abnormalities in secondary MDS and AML. Relationship to drugs and radiation with specific emphasis on the balanced rearrangements. Haematologica 1998; 83: 483–488.

    CAS  PubMed  Google Scholar 

  24. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10: 1119–1128.

    CAS  PubMed  Google Scholar 

  25. Hsieh JJ, Cheng EH, Korsmeyer SJ . Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 2003; 115: 293–303.

    CAS  PubMed  Google Scholar 

  26. Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 2005; 121: 873–885.

    Article  CAS  PubMed  Google Scholar 

  27. Southall SM, Wong PS, Odho Z, Roe SM, Wilson JR . Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell 2009; 33: 181–191.

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama A, Cleary ML . Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008; 14: 36–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK . The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 2002; 30: 958–965.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sierra J, Yoshida T, Joazeiro CA, Jones KA . The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 2006; 20: 586–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  32. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24: 5639–5649.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML . MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003; 3: 161–171.

    CAS  PubMed  Google Scholar 

  35. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T . AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 2003; 102: 2395–2402.

    CAS  PubMed  Google Scholar 

  36. Creutzig U, Buchner T, Sauerland MC, Zimmermann M, Reinhardt D, Dohner H et al. Significance of age in acute myeloid leukemia patients younger than 30 years: a common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 2008; 112: 562–571.

    PubMed  Google Scholar 

  37. Shih LY, Liang DC, Fu JF, Wu JH, Wang PN, Lin TL et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia 2006; 20: 218–223.

    CAS  PubMed  Google Scholar 

  38. Shimada A, Taki T, Tabuchi K, Taketani T, Hanada R, Tawa A et al. Tandem duplications of MLL and FLT3 are correlated with poor prognoses in pediatric acute myeloid leukemia: a study of the Japanese childhood AML Cooperative Study Group. Pediatr Blood Cancer 2008; 50: 264–269.

    PubMed  Google Scholar 

  39. Balgobind BV, Hollink IH, Reinhardt D, van Wering ER, de Graaf SS, Baruchel A et al. Low frequency of MLL-partial tandem duplications in paediatric acute myeloid leukaemia using MLPA as a novel DNA screenings technique. Eur J Cancer 2010; 46: 1892–1899.

    CAS  PubMed  Google Scholar 

  40. Bacher U, Kern W, Schnittger S, Hiddemann W, Haferlach T, Schoch C . Population-based age-specific incidences of cytogenetic subgroups of acute myeloid leukemia. Haematologica 2005; 90: 1502–1510.

    CAS  PubMed  Google Scholar 

  41. Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood 2003; 102: 2198–2204.

    CAS  PubMed  Google Scholar 

  42. Munoz L, Nomdedeu JF, Villamor N, Guardia R, Colomer D, Ribera JM et al. Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 2003; 17: 76–82.

    CAS  PubMed  Google Scholar 

  43. Olesen LH, Aggerholm A, Andersen BL, Nyvold CG, Guldberg P, Norgaard JM et al. Molecular typing of adult acute myeloid leukaemia: significance of translocations, tandem duplications, methylation, and selective gene expression profiling. Br J Haematol 2005; 131: 457–467.

    CAS  PubMed  Google Scholar 

  44. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004; 103: 1901–1908.

    CAS  PubMed  Google Scholar 

  45. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 2000; 14: 796–804.

    CAS  PubMed  Google Scholar 

  46. Shiah HS, Kuo YY, Tang JL, Huang SY, Yao M, Tsay W et al. Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia 2002; 16: 196–202.

    CAS  PubMed  Google Scholar 

  47. Steudel C, Wermke M, Schaich M, Schakel U, Illmer T, Ehninger G et al. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer 2003; 37: 237–251.

    CAS  PubMed  Google Scholar 

  48. Raimondi SC, Chang MN, Ravindranath Y, Behm FG, Gresik MV, Steuber CP et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 1999; 94: 3707–3716.

    CAS  PubMed  Google Scholar 

  49. Mrozek K, Heinonen K, Lawrence D, Carroll AJ, Koduru PR, Rao KW et al. Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood 1997; 90: 4532–4538.

    CAS  PubMed  Google Scholar 

  50. Bach C, Slany RK . Molecular pathology of mixed-lineage leukemia. Future Oncol 2009; 5: 1271–1281.

    CAS  PubMed  Google Scholar 

  51. Marschalek R . Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS J 2010; 277: 1822–1831.

    CAS  PubMed  Google Scholar 

  52. Marschalek R . Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol 2011; 152: 141–154.

    CAS  PubMed  Google Scholar 

  53. Slany RK . The molecular biology of mixed lineage leukemia. Haematologica 2009; 94: 984–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zeisig DT, Bittner CB, Zeisig BB, Garcia-Cuellar MP, Hess JL, Slany RK . The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene 2005; 24: 5525–5532.

    CAS  PubMed  Google Scholar 

  55. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445–4454.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    CAS  PubMed  Google Scholar 

  57. Peterlin BM, Price DH . Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006; 23: 297–305.

    CAS  PubMed  Google Scholar 

  58. Mueller D, Garcia-Cuellar MP, Bach C, Buhl S, Maethner E, Slany RK . Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 2009; 7: e1000249.

    PubMed  PubMed Central  Google Scholar 

  59. Srinivasan RS, Nesbit JB, Marrero L, Erfurth F, LaRussa VF, Hemenway CS . The synthetic peptide PFWT disrupts AF4–AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia 2004; 18: 1364–1372.

    CAS  PubMed  Google Scholar 

  60. So CW, Lin M, Ayton PM, Chen EH, Cleary ML . Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003; 4: 99–110.

    CAS  PubMed  Google Scholar 

  61. Garcia-Cuellar MP, Schreiner SA, Birke M, Hamacher M, Fey GH, Slany RK . ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11)+. Oncogene 2000; 19: 1744–1751.

    CAS  PubMed  Google Scholar 

  62. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    CAS  PubMed  Google Scholar 

  63. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    CAS  PubMed  Google Scholar 

  64. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959.

    CAS  PubMed  Google Scholar 

  65. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    CAS  PubMed  Google Scholar 

  66. Balgobind BV, Zwaan CM, Reinhardt D, Arentsen-Peters TJ, Hollink IH, de Haas V et al. High BRE expression in pediatric MLL-rearranged AML is associated with favorable outcome. Leukemia 2010; 24: 2048–2055.

    CAS  PubMed  Google Scholar 

  67. Cimino G, Rapanotti MC, Elia L, Biondi A, Fizzotti M, Testi AM et al. ALL-1 gene rearrangements in acute myeloid leukemia: association with M4–M5 French–American–British classification subtypes and young age. Cancer Res 1995; 55: 1625–1628.

    CAS  PubMed  Google Scholar 

  68. Rubnitz JE, Raimondi SC, Tong X, Srivastava DK, Razzouk BI, Shurtleff SA et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 2002; 20: 2302–2309.

    CAS  PubMed  Google Scholar 

  69. Creutzig U, Zimmermann M, Ritter J, Reinhardt D, Hermann J, Henze G et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia 2005; 19: 2030–2042.

    CAS  PubMed  Google Scholar 

  70. Kardos G, Zwaan CM, Kaspers GJ, de-Graaf SS, de Bont ES, Postma A et al. Treatment strategy and results in children treated on three Dutch Childhood Oncology Group acute myeloid leukemia trials. Leukemia 2005; 19: 2063–2071.

    CAS  PubMed  Google Scholar 

  71. Lie SO, Abrahamsson J, Clausen N, Forestier E, Hasle H, Hovi L et al. Long-term results in children with AML: NOPHO-AML Study Group—report of three consecutive trials. Leukemia 2005; 19: 2090–2100.

    CAS  PubMed  Google Scholar 

  72. Perel Y, Auvrignon A, Leblanc T, Michel G, Reguerre Y, Vannier JP et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit—multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia 2005; 19: 2082–2089.

    CAS  PubMed  Google Scholar 

  73. Pession A, Rondelli R, Basso G, Rizzari C, Testi AM, Fagioli F et al. Treatment and long-term results in children with acute myeloid leukaemia treated according to the AIEOP AML protocols. Leukemia 2005; 19: 2043–2053.

    CAS  PubMed  Google Scholar 

  74. Ravindranath Y, Chang M, Steuber CP, Becton D, Dahl G, Civin C et al. Pediatric Oncology Group (POG) studies of acute myeloid leukemia (AML): a review of four consecutive childhood AML trials conducted between 1981 and 2000. Leukemia 2005; 19: 2101–2116.

    CAS  PubMed  Google Scholar 

  75. Ribeiro RC, Razzouk BI, Pounds S, Hijiya N, Pui CH, Rubnitz JE . Successive clinical trials for childhood acute myeloid leukemia at St Jude Children's Research Hospital, from 1980 to 2000. Leukemia 2005; 19: 2125–2129.

    CAS  PubMed  Google Scholar 

  76. Smith FO, Alonzo TA, Gerbing RB, Woods WG, Arceci RJ . Long-term results of children with acute myeloid leukemia: a report of three consecutive phase III trials by the Children's Cancer Group: CCG 251, CCG 213 and CCG 2891. Leukemia 2005; 19: 2054–2062.

    CAS  PubMed  Google Scholar 

  77. Katano N, Tsurusawa M, Hirota T, Horikoshi Y, Mimaya J, Yanai M et al. Treatment outcome and prognostic factors in childhood acute myeloblastic leukemia: a report from the Japanese Children's Cancer and Leukemia Study Group (CCLSG). Int J Hematol 1997; 66: 103–110.

    CAS  PubMed  Google Scholar 

  78. Co NN, Tsang WP, Wong TW, Cheung HH, Tsang TY, Kong SK et al. Oncogene AF1q enhances doxorubicin-induced apoptosis through BAD-mediated mitochondrial apoptotic pathway. Mol Cancer Ther 2008; 7: 3160–3168.

    CAS  PubMed  Google Scholar 

  79. Tse W, Meshinchi S, Alonzo TA, Stirewalt DL, Gerbing RB, Woods WG et al. Elevated expression of the AF1q gene, an MLL fusion partner, is an independent adverse prognostic factor in pediatric acute myeloid leukemia. Blood 2004; 104: 3058–3063.

    CAS  PubMed  Google Scholar 

  80. Blum W, Mrozek K, Ruppert AS, Carroll AJ, Rao KW, Pettenati MJ et al. Adult de novo acute myeloid leukemia with t(6;11)(q27;q23): results from Cancer and Leukemia Group B Study 8461 and review of the literature. Cancer 2004; 101: 1420–1427.

    PubMed  Google Scholar 

  81. Lie SO, Abrahamsson J, Clausen N, Forestier E, Hasle H, Hovi L et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br J Haematol 2003; 122: 217–225.

    PubMed  Google Scholar 

  82. Zwaan CM, Kaspers GJ, Pieters R, Hahlen K, Huismans DR, Zimmermann M et al. Cellular drug resistance in childhood acute myeloid leukemia is related to chromosomal abnormalities. Blood 2002; 100: 3352–3360.

    CAS  PubMed  Google Scholar 

  83. Palle J, Frost BM, Forestier E, Gustafsson G, Nygren P, Hellebostad M et al. Cellular drug sensitivity in MLL-rearranged childhood acute leukaemia is correlated to partner genes and cell lineage. Br J Haematol 2005; 129: 189–198.

    CAS  PubMed  Google Scholar 

  84. Thirman MJ, Gill HJ, Burnett RC, Mbangkollo D, McCabe NR, Kobayashi H et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med 1993; 329: 909–914.

    CAS  PubMed  Google Scholar 

  85. Dyson MJ, Talley PJ, Reilly JT, Stevenson D, Parsons E, Tighe J . Detection of cryptic MLL insertions using a commercial dual-color fluorescence in situ hybridization probe. Cancer Genet Cytogenet 2003; 147: 81–83.

    CAS  PubMed  Google Scholar 

  86. von Bergh A, Emanuel B, van Zelderen-Bhola S, Smetsers T, van Soest R, Stul M et al. A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias. Genes Chromosomes Cancer 2000; 28: 14–22.

    CAS  PubMed  Google Scholar 

  87. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    CAS  PubMed  Google Scholar 

  88. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, Beverloo HB, Terlouw-Kromosoeto JN, van Wering ER et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 2008; 111: 4322–4328.

    CAS  PubMed  Google Scholar 

  89. Lee JW, Soung YH, Park WS, Kim SY, Nam SW, Min WS et al. BRAF mutations in acute leukemias. Leukemia 2004; 18: 170–172.

    CAS  PubMed  Google Scholar 

  90. Swanson KD, Winter JM, Reis M, Bentires-Alj M, Greulich H, Grewal R et al. SOS1 mutations are rare in human malignancies: implications for Noonan Syndrome patients. Genes Chromosomes Cancer 2008; 47: 253–259.

    CAS  PubMed  Google Scholar 

  91. Tanizaki R, Katsumi A, Kiyoi H, Kunishima S, Iwasaki T, Ishikawa Y et al. Mutational analysis of SOS1 gene in acute myeloid leukemia. Int J Hematol 2008; 88: 460–462.

    CAS  PubMed  Google Scholar 

  92. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005; 19: 1536–1542.

    CAS  PubMed  Google Scholar 

  93. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009; 113: 5951–5960.

    CAS  PubMed  Google Scholar 

  94. Hollink IH, Zwaan CM, Zimmermann M, Arentsen-Peters TC, Pieters R, Cloos J et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 2009; 23: 262–270.

    CAS  PubMed  Google Scholar 

  95. Ho PA, Alonzo TA, Gerbing RB, Pollard J, Stirewalt DL, Hurwitz C et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 2009; 113: 6558–6566.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ho PA, Zeng R, Alonzo TA, Gerbing RB, Miller KL, Pollard JA et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 2010; 116: 702–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim WI, Matise I, Diers MD, Largaespada DA . RAS oncogene suppression induces apoptosis followed by more differentiated and less myelosuppressive disease upon relapse of acute myeloid leukemia. Blood 2009; 113: 1086–1096.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Stubbs MC, Kim YM, Krivtsov AV, Wright RD, Feng Z, Agarwal J et al. MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment. Leukemia 2008; 22: 66–77.

    CAS  PubMed  Google Scholar 

  99. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005; 106: 2484–2490.

    CAS  PubMed  Google Scholar 

  100. Kuchenbauer F, Kern W, Schoch C, Kohlmann A, Hiddemann W, Haferlach T et al. Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica 2005; 90: 1617–1625.

    CAS  PubMed  Google Scholar 

  101. Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111: 4329–4337.

    CAS  PubMed  Google Scholar 

  102. Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol 2010; 28: 2101–2107.

    PubMed  Google Scholar 

  103. Balgobind BV, Lugthart S, Hollink IH, Arentsen-Peters ST, van Wering ER, de Graaf SS et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia 2010; 24: 942–949.

    CAS  PubMed  Google Scholar 

  104. Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA et al. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell 2008; 13: 432–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuipers JE, Coenen EA, Balgobind BV, Stary J, Baruchel A, de Haas V et al. High IGSF4 expression in pediatric M5 acute myeloid leukemia with t(9;11)(p22;q23). Blood 2011; 117: 928–935.

    CAS  PubMed  Google Scholar 

  106. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group study. J Clin Oncol 2009; 27: 5175–5181.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    CAS  PubMed  Google Scholar 

  108. Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D . FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 2005; 105: 812–820.

    CAS  PubMed  Google Scholar 

  109. Brown P, Meshinchi S, Levis M, Alonzo TA, Gerbing R, Lange B et al. Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood 2004; 104: 1841–1849.

    CAS  PubMed  Google Scholar 

  110. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    CAS  PubMed  Google Scholar 

  111. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    CAS  PubMed  Google Scholar 

  112. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML . Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008; 455: 1205–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A et al. Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci 2007; 98: 1388–1393.

    CAS  PubMed  Google Scholar 

  114. Tighe A, Ray-Sinha A, Staples OD, Taylor SS . GSK-3 inhibitors induce chromosome instability. BMC Cell Biol 2007; 8: 34.

    PubMed  PubMed Central  Google Scholar 

  115. Lancet JE, Gojo I, Gotlib J, Feldman EJ, Greer J, Liesveld JL et al. A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 2007; 109: 1387–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008; 100: 184–198.

    CAS  PubMed  Google Scholar 

  117. Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J et al. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma 2010; 51: 252–260.

    CAS  PubMed  Google Scholar 

  118. Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 1856–1862.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kerr AH, James JA, Smith MA, Willson C, Court EL, Smith JG . An investigation of the MEK/ERK inhibitor U0126 in acute myeloid leukemia. Ann NY Acad Sci 2003; 1010: 86–89.

    CAS  PubMed  Google Scholar 

  120. Lunghi P, Costanzo A, Salvatore L, Noguera N, Mazzera L, Tabilio A et al. MEK1 inhibition sensitizes primary acute myelogenous leukemia to arsenic trioxide-induced apoptosis. Blood 2006; 107: 4549–4553.

    CAS  PubMed  Google Scholar 

  121. Nishioka C, Ikezoe T, Yang J, Komatsu N, Koeffler HP, Yokoyama A . Blockade of MEK signaling potentiates 5-aza-2′-deoxycytidine-induced apoptosis and upregulation of p21(waf1) in acute myelogenous leukemia cells. Int J Cancer 2009; 125: 1168–1176.

    CAS  PubMed  Google Scholar 

  122. Sebolt-Leopold JS . Advances in the development of cancer therapeutics directed against the RAS–mitogen-activated protein kinase pathway. Clin Cancer Res 2008; 14: 3651–3656.

    CAS  PubMed  Google Scholar 

  123. Liedtke M, Cleary ML . Therapeutic targeting of MLL. Blood 2009; 113: 6061–6068.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen YX, Yan J, Keeshan K, Tubbs AT, Wang H, Silva A et al. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci USA 2006; 103: 1018–1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ayton PM, Chen EH, Cleary ML . Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 2004; 24: 10470–10478.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Barry ER, Corry GN, Rasmussen TP . Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development. Expert Opin Ther Targets 2010; 14: 405–418.

    CAS  PubMed  Google Scholar 

  127. Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 2008; 4: e1000190.

    PubMed  PubMed Central  Google Scholar 

  128. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML . Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007; 21: 2762–2774.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Anne-Sophie E Darlington for editorial assistance. We thank the different study groups (BFM, JPLSG, LAME, CPH, AIEOP, COG, St Jude, NOPHO, DCOG and MRC) for their collaboration in the MLL-rearranged pediatric AML study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Van den Heuvel-Eibrink.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balgobind, B., Zwaan, C., Pieters, R. et al. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 25, 1239–1248 (2011). https://doi.org/10.1038/leu.2011.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.90

Keywords

This article is cited by

Search

Quick links