Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

p53 Independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia

Abstract

Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin-modifying enzyme DNA methyl-transferase 1 without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine upregulated the key late differentiation factors CCAAT enhancer-binding protein ɛ and p27/cyclin dependent kinase inhibitor 1B (CDKN1B), induced cellular differentiation and terminated AML cell cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xenotransplanted AML cells was abrogated but normal hematopoietic stem cell engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S phase specific decitabine therapy. In xenotransplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared with conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vazquez A, Bond EE, Levine AJ, Bond GL . The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 2008; 7: 979–987.

    Article  CAS  PubMed  Google Scholar 

  2. Suarez L, Vidriales MB, Garcia-Larana J, Sanz G, Moreno MJ, Lopez A et al. CD34+ cells from acute myeloid leukemia, myelodysplastic syndromes, and normal bone marrow display different apoptosis and drug resistance-associated phenotypes. Clin Cancer Res 2004; 10: 7599–7606.

    Article  CAS  PubMed  Google Scholar 

  3. Yin B, Kogan SC, Dickins RA, Lowe SW, Largaespada DA . Trp53 loss during in vitro selection contributes to acquired Ara-C resistance in acute myeloid leukemia. Exp Hematol 2006; 34: 631–641.

    Article  CAS  PubMed  Google Scholar 

  4. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994; 84: 3148–3157.

    CAS  PubMed  Google Scholar 

  5. Toledo F, Wahl GM . Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  6. Harutyunyan A, Klampfl T, Cazzola M, Kralovics R . p53 lesions in leukemic transformation. N Engl J Med 2011; 364: 488–490.

    Article  CAS  PubMed  Google Scholar 

  7. Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T . Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 2008; 22: 1539–1541.

    Article  CAS  PubMed  Google Scholar 

  8. Attardi LD, Donehower LA . Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 2005; 576: 4–21.

    Article  CAS  PubMed  Google Scholar 

  9. PIERCE Jr GB, VERNEY EL . An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer 1961; 14: 1017–1029.

    Article  PubMed  Google Scholar 

  10. Michalewicz R, Lotem J, Sachs L . Cell differentiation and therapeutic effect of low doses of cytosine arabinoside in human myeloid leukemia. Leuk Res 1984; 8: 783–790.

    Article  CAS  PubMed  Google Scholar 

  11. Seilern-Aspang F, Kratochwil K . Induction and differentiation of an epithelial tumour in the newt (Triturus cristatus). J Embryol Exp Morphol 1962; 10: 337–356.

    CAS  PubMed  Google Scholar 

  12. Jones PA, Taylor SM . Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20: 85–93.

    Article  CAS  PubMed  Google Scholar 

  13. Pinto A, Attadia V, Fusco A, Ferrara F, Spada OA, Di Fiore PP . 5-Aza-2′-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood 1984; 64: 922–929.

    CAS  PubMed  Google Scholar 

  14. Creusot F, Acs G, Christman JK . Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 1982; 257: 2041–2048.

    CAS  PubMed  Google Scholar 

  15. Nowak D, Stewart D, Koeffler HP . Differentiation therapy of leukemia: 3 decades of development. Blood 2009; 113: 3655–3665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niitsu N, Hayashi Y, Sugita K, Honma Y . Sensitization by 5-aza-2′-deoxycytidine of leukaemia cells with MLL abnormalities to induction of differentiation by all-trans retinoic acid and 1alpha,25-dihydroxyvitamin D3. Br J Haematol 2001; 112: 315–326.

    Article  CAS  PubMed  Google Scholar 

  17. Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T et al. Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 1999; 13: 1316–1324.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Saunthararajah Y, Redner RL, Liu JM . Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 1999; 59: 2766–2769.

    CAS  PubMed  Google Scholar 

  19. Schmelz K, Wagner M, Dorken B, Tamm I . 5-Aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer 2005; 114: 683–695.

    Article  CAS  PubMed  Google Scholar 

  20. Tuma RS . Epigenetic therapies move into new territory, but how exactly do they work? J Natl Cancer Inst 2009; 101: 1300–1301.

    Article  PubMed  Google Scholar 

  21. Covey JM, D’Incalci M, Tilchen EJ, Zaharko DS, Kohn KW . Differences in DNA damage produced by incorporation of 5-aza-2′-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells. Cancer Res 1986; 46: 5511–5517.

    CAS  PubMed  Google Scholar 

  22. Schermelleh L, Haemmer A, Spada F, Rosing N, Meilinger D, Rothbauer U et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res 2007; 35: 4301–4312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Momparler RL, Goodman J . In vitro cytotoxic and biochemical effects of 5-aza-2′-deoxycytidine. Cancer Res 1977; 37: 1636–1639.

    CAS  PubMed  Google Scholar 

  24. Halaban R, Krauthammer M, Pelizzola M, Cheng E, Kovacs D, Sznol M et al. Integrative analysis of epigenetic modulation in melanoma cell response to decitabine: clinical implications. PLoS ONE 2009; 4: e4563.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 2003; 102: 3865–3870.

    Article  CAS  PubMed  Google Scholar 

  26. Milhem M, Mahmud N, Lavelle D, Araki H, Desimone J, Saunthararajah Y et al. Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A. Blood 2004; 103: 4102–4110.

    Article  CAS  PubMed  Google Scholar 

  27. Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N . Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 2007; 109: 3570–3578.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki M, Harashima A, Okochi A, Yamamoto M, Nakamura S, Motoda R et al. 5-Azacytidine supports the long-term repopulating activity of cord blood CD34(+) cells. Am J Hematol 2004; 77: 313–315.

    Article  CAS  PubMed  Google Scholar 

  29. Chung YS, Kim HJ, Kim TM, Hong SH, Kwon KR, An S et al. Undifferentiated hematopoietic cells are characterized by a genome-wide undermethylation dip around the transcription start site and a hierarchical epigenetic plasticity. Blood 2009; 114: 4968–4978.

    Article  CAS  PubMed  Google Scholar 

  30. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996; 85: 733–744.

    Article  CAS  PubMed  Google Scholar 

  31. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 1996; 85: 721–732.

    Article  CAS  PubMed  Google Scholar 

  32. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85: 707–720.

    Article  CAS  PubMed  Google Scholar 

  33. Furukawa Y, Kikuchi J, Nakamura M, Iwase S, Yamada H, Matsuda M . Lineage-specific regulation of cell cycle control gene expression during haematopoietic cell differentiation. Br J Haematol 2000; 110: 663–673.

    Article  CAS  PubMed  Google Scholar 

  34. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Z, Marcucci G, Byrd JC, Grever M, Xiao J, Chan KK . Characterization of decomposition products and preclinical and low dose clinical pharmacokinetics of decitabine (5-aza-2′-deoxycytidine) by a new liquid chromatography/tandem mass spectrometry quantification method. Rapid Commun Mass Spectrom 2006; 20: 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  36. Rogstad DK, Herring JL, Theruvathu JA, Burdzy A, Perry CC, Neidigh JW et al. Chemical decomposition of 5-aza-2′-deoxycytidine (Decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry. Chem Res Toxicol 2009; 22: 1194–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci USA 2007; 104: 13086–13091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Odero MD, Zeleznik L, Chinwalla V, Rowley JD . Cytogenetic and molecular analysis of the acute monocytic leukemia cell line THP-1 with an MLL-AF9 translocation. Genes Chromosomes Cancer 2000; 29: 333–338.

    Article  CAS  PubMed  Google Scholar 

  39. Kim WY, Sharpless NE . The regulation of INK4/ARF in cancer and aging. Cell 2006; 127: 265–275.

    Article  CAS  PubMed  Google Scholar 

  40. Iwasaki H, Akashi K . Myeloid lineage commitment from the hematopoietic stem cell. Immunity 2007; 26: 726–740.

    Article  CAS  PubMed  Google Scholar 

  41. Yamanaka R, Barlow C, Lekstrom-Himes J, Castilla LH, Liu PP, Eckhaus M et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc Natl Acad Sci USA 1997; 94: 13187–13192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Theilgaard-Monch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC et al. The transcriptional program of terminal granulocytic differentiation. Blood 2005; 105: 1785–1796.

    Article  PubMed  Google Scholar 

  43. Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N et al. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 2003; 101: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  44. Agrawal S, Hofmann WK, Tidow N, Ehrich M, van den BD, Koschmieder S et al. The C/EBPdelta tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood 2007; 109: 3895–3905.

    Article  CAS  PubMed  Google Scholar 

  45. Hsieh FF, Barnett LA, Green WF, Freedman K, Matushansky I, Skoultchi AI et al. Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase. Blood 2000; 96: 2746–2754.

    CAS  PubMed  Google Scholar 

  46. Sakashita K, Koike K, Kinoshita T, Shiohara M, Kamijo T, Taniguchi S et al. Dynamic DNA methylation change in the CpG island region of p15 during human myeloid development. J Clin Invest 2001; 108: 1195–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamel-Reid S, Dick JE . Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242: 1706–1709.

    Article  CAS  PubMed  Google Scholar 

  48. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  49. Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N et al. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 2010; 5: e9001.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guo Y, Engelhardt M, Wider D, Abdelkarim M, Lubbert M . Effects of 5-aza-2′-deoxycytidine on proliferation, differentiation and p15/INK4b regulation of human hematopoietic progenitor cells. Leukemia 2006; 20: 115–121.

    Article  CAS  PubMed  Google Scholar 

  51. Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev 2009; 23: 877–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu Z, Negrotto S, Gu X, Mahfouz R, Ng KP, Ebrahem Q et al. Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation-inducing stimulus. Mol Cancer Ther 2010; 9: 1536–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dick JE . Stem cell concepts renew cancer research. Blood 2008; 112: 4793–4807.

    Article  CAS  PubMed  Google Scholar 

  54. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  PubMed  Google Scholar 

  55. Kirstetter P, Schuster MB, Bereshchenko O, Moore S, Dvinge H, Kurz E et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 2008; 13: 299–310.

    Article  CAS  PubMed  Google Scholar 

  56. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    Article  CAS  PubMed  Google Scholar 

  57. Somervaille TC, Cleary ML . Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006; 10: 257–268.

    Article  CAS  PubMed  Google Scholar 

  58. van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S et al. Aberrant marker expression patterns on the CD34+. Leukemia 2007; 21: 1700–1707.

    Article  CAS  PubMed  Google Scholar 

  59. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ . Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89: 3104–3112.

    CAS  PubMed  Google Scholar 

  60. Blair A, Sutherland HJ . Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 2000; 28: 660–671.

    Article  CAS  PubMed  Google Scholar 

  61. Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE . Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003; 17: 760–763.

    Article  CAS  PubMed  Google Scholar 

  62. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010; 24: 1785–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 2008; 123: 2222–2227.

    Article  CAS  PubMed  Google Scholar 

  64. Rivard GE, Momparler RL, Demers J, Benoit P, Raymond R, Lin K et al. Phase I study on 5-aza-2′-deoxycytidine in children with acute leukemia. Leuk Res 1981; 5: 453–462.

    Article  CAS  PubMed  Google Scholar 

  65. Sorm F, Vesely J . Effect of 5-aza-2′-deoxycytidine against leukemic and hemopoietic tissues in AKR mice. Neoplasma 1968; 15: 339–343.

    CAS  PubMed  Google Scholar 

  66. Farinha NJ, Shaker S, Lemaire M, Momparler L, Bernstein M, Momparler RL . Activation of expression of p15, p73 and E-cadherin in leukemic cells by different concentrations of 5-aza-2′-deoxycytidine (decitabine). Anticancer Res 2004; 24: 75–78.

    CAS  PubMed  Google Scholar 

  67. Jiemjit A, Fandy TE, Carraway H, Bailey KA, Baylin S, Herman JG et al. p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage. Oncogene 2008; 27: 3615–3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raj K, John A, Ho A, Chronis C, Khan S, Samuel J et al. CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 2007; 21: 1937–1944.

    Article  CAS  PubMed  Google Scholar 

  69. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, Cortes J et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007; 109: 52–57.

    Article  CAS  PubMed  Google Scholar 

  70. Steensma DP, Baer MR, Slack JL, Buckstein R, Godley LA, Garcia-Manero G et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol 2009; 27: 3842–3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the following gifts: Mary Laughlin and Nick Greco at the Abraham J and Phyllis Katz Cord Blood Foundation and Cleveland Cord Blood Center for cord blood samples; YS is supported by NIH (1R01CA138858, U54HL090513) and Department of Defense (PR081404). KPN and YS are supported by Scott Hamilton CARES Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Saunthararajah.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K., Ebrahem, Q., Negrotto, S. et al. p53 Independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 25, 1739–1750 (2011). https://doi.org/10.1038/leu.2011.159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.159

Keywords

This article is cited by

Search

Quick links