Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitivity and Resistance to Therapy

Long-term exposure of leukemia cells to multi-targeted tyrosine kinase inhibitor induces activations of AKT, ERK and STAT5 signaling via epigenetic silencing of the PTEN gene

Abstract

Imatinib induces complete molecular response in patients with chronic myeloid leukemia (CML) and chronic eosinophilic leukemia (CEL). However, development of resistance to imatinib has emerged as an important clinical problem for molecular-targeted therapy in CML and CEL. In this study, we have established the imatinib-resistant CEL EOL-1 sub-lines (designated as EOL-1R) by culturing cells with increasing concentrations of imatinib for 6 months. Interestingly, EOL-1R cells showed epigenetic silencing of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene. Exposure of EOL-1R cells to imatinib failed to dephosphorylate AKT, ERK and STAT5, although PDGFRα was effectively inactivated. The forced expression of PTEN negatively regulated these signal pathways and sensitized EOL-1R cells to imatinib. Notably, hypermethylation of the promoter region of the PTEN gene in association with the downregulation of this gene's transcripts was identified in imatinib-resistant leukemia cells isolated from individuals with CEL, CML and Philadelphia-positive acute lymphoblastic leukemia. In addition, anti-epigenetic agents restored PTEN expression, resulting in the sensitization of EOL-1R cells to imatinib. Taken together, epigenetic silence of PTEN is one of the mechanisms that cause drug resistance in individuals with leukemia after exposure to imatinib. Anti-epigenetic agents may be useful for overcoming drug resistance in such a case.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295: 139–145.

    CAS  PubMed  Google Scholar 

  2. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    CAS  PubMed  Google Scholar 

  3. Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP et al. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 2005; 105: 3127–3132.

    Article  CAS  PubMed  Google Scholar 

  4. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ . Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000; 96: 925–932.

    CAS  PubMed  Google Scholar 

  5. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Ras/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  PubMed  Google Scholar 

  6. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. International STI571 CML Study Group. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  7. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  PubMed  Google Scholar 

  8. Talpaz M, Rakhit A, Rittweger K, O’Brien S, Cortes J, Fettner S et al. Phase I evaluation of a 40-kDa branched-chain long-acting pegylated IFN-alpha-2a with and without cytarabine in patients with chronic myelogenous leukemia. Clin Cancer Res 2005; 11: 6247–6255.

    Article  CAS  PubMed  Google Scholar 

  9. Kantarjian HM, Talpaz M, O’Brien S, Jones D, Giles F, Garcia-Manero G et al. Survival benefit with imatinib mesylate versus interferon-alpha-based regimens in newly diagnosed chronic-phase chronic myelogenous leukemia. Blood 2006; 108: 1835–1840.

    Article  CAS  PubMed  Google Scholar 

  10. Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002; 347: 481–487.

    Article  CAS  PubMed  Google Scholar 

  11. Helbig G, Stella-Hołowiecka B, Majewski M, Całbecka M, Gajkowska J, Klimkiewicz R et al. A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRα-expressing patients. Br J Haematol 2008; 141: 200–204.

    Article  CAS  PubMed  Google Scholar 

  12. Jovanovic JV, Score J, Waghorn K, Cilloni D, Gottardi E, Metzgeroth G et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRα-positive chronic eosinophilic leukemia. Blood 2007; 109: 4635–4640.

    Article  CAS  PubMed  Google Scholar 

  13. Cools J, Stover EH, Wlodarska I, Marynen P, Gilliland DG . The FIP1L1-PDGFRalpha kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia. Curr Opin Hematol 2004; 11: 51–57.

    Article  CAS  PubMed  Google Scholar 

  14. Cools J, Maertens C, Marynen P . Resistance to tyrosine kinase inhibitors: calling on extra forces. Drug Resist Updat 2005; 8: 119–129.

    Article  CAS  PubMed  Google Scholar 

  15. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  16. Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R . Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA 2003; 100: 7830–7835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. von Bubnoff N, Sandherr M, Schlimok G, Andreesen R, Peschel C, Duyster J . Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 2005; 19: 286–287.

    Article  CAS  PubMed  Google Scholar 

  18. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI . PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  20. Cully M, You H, Levine AJ, Mak TW . Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev 2006; 6: 184–192.

    Article  CAS  Google Scholar 

  21. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    Article  CAS  PubMed  Google Scholar 

  22. Shao DZ, Lin M . Platonin inhibits LPS-induced NF-κB by preventing activation of Akt and IKKβ in human PBMC. Inflamm Res 2008; 57: 601–606.

    Article  CAS  PubMed  Google Scholar 

  23. Manning BD, Cantley LC . AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang JM, He QY, Guo RX, Chang XJ . Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confer poor prognosis. Lung Cancer 2006; 51: 181–191.

    Article  PubMed  Google Scholar 

  25. Bepler G, Sharma S, Cantor A, Gautam A, Haura E, Simon G et al. RRM1 and PTEN as prognostic parameters for overall and disease-free survival in patients with non-small-cell lung cancer. J Clin Oncol 2004; 22: 1878–1885.

    Article  CAS  PubMed  Google Scholar 

  26. Sui L, Dong Y, Watanabe Y, Yamaguchi F, Sugimoto K, Tokuda M . Alteration and clinical relevance of PTEN expression and its correlation with survivin expression in epithelial ovarian tumors. Oncol Rep 2006; 15: 773–778.

    CAS  PubMed  Google Scholar 

  27. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 2007; 104: 7564–7569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 1998; 95: 5246–5250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    Article  CAS  PubMed  Google Scholar 

  30. Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA et al. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 2001; 91: 22–26.

    Article  CAS  PubMed  Google Scholar 

  31. Nishioka C, Ikezoe T, Yang J, Koeffler HP, Taguchi H . Fludarabine induces apoptosis of human T-cell leukemia virus type 1-infected T cells via inhibition of the nuclear factor-kappaB signal pathway. Leukemia 2007; 21: 1044–1049.

    Article  CAS  PubMed  Google Scholar 

  32. Ikezoe T, Daar ES, Hisatake J, Taguchi H, Koeffler HP . HIV-1 protease inhibitors decrease proliferation and induce differentiation of human myelocytic leukemia cells. Blood 2000; 96: 3553–3559.

    CAS  PubMed  Google Scholar 

  33. Nishioka C, Ikezoe T, Yang J, Miwa A, Tasaka T, Kuwayama Y et al. Ki11502, a novel multi-targeted receptor tyrosine kinase inhibitor, induces growth arrest and apoptosis of human leukemia cells in vitro and in vivo. Blood 2008; 111: 5086–5092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ikezoe T, Tanosaki S, Krug U, Liu B, Cohen P, Taguchi H et al. Insulin-like growth factor binding protein-3 antagonizes the effects of retinoids in myeloid leukemia cells. Blood 2004; 104: 237–242.

    Article  CAS  PubMed  Google Scholar 

  35. Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA et al. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 2001; 91: 22–26.

    Article  CAS  PubMed  Google Scholar 

  36. Nishioka C, Ikezoe T, Yang J, Komatsu N, Koeffler HP, Yokoyama A . Blockade of MEK signaling potentiates 5-Aza-2′-deoxycytidine-induced apoptosis and upregulation of p21(waf1) in acute myelogenous leukemia cells. Int J Cancer 2009; 125: 1168–1176.

    Article  CAS  PubMed  Google Scholar 

  37. Shimamura A, Ballif BA, Richards SA, Blenis J . Rsk1 mediates a MEK–MAP kinase cell survival signal. Curr Biol 2000; 10: 127–135.

    Article  CAS  PubMed  Google Scholar 

  38. Rosa Santos SC, Dumon S, Mayeux P, Gisselbrecht S, Gouilleux F . Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line. Oncogene 2000; 19: 1164–1172.

    Article  CAS  PubMed  Google Scholar 

  39. Warr MR, Shore GC . Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr Mol Med 2008; 8: 138–147.

    Article  CAS  PubMed  Google Scholar 

  40. Ikezoe T, Tasaka T, Nishioka C, Yokoyama A . Successful treatment of imatinib-resistant hypereosinophilic syndrome with nilotinib. Leuk Res 2010; 34: e200–e201.

    Article  PubMed  Google Scholar 

  41. de Lavallade H, Finetti P, Carbuccia N, Khorashad JS, Charbonnier A, Foroni L et al. A gene expression signature of primary resistance to imatinib in chronic myeloid leukemia. Leuk Res 2010; 34: 254–257.

    Article  CAS  PubMed  Google Scholar 

  42. Noro R, Gemma A, Miyanaga A, Kosaihira S, Minegishi Y, Nara M et al. PTEN inactivation in lung cancer cells and the effect of its recovery on treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Int J Oncol 2007; 31: 1157–1163.

    CAS  PubMed  Google Scholar 

  43. Kokubo Y, Gemma A, Noro R, Seike M, Kataoka K, Matsuda K et al. Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA). Br J Cancer 2005; 92: 1711–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhuang HQ, Wang J, Yuan ZY, Zhao LJ, Wang P, Wang CL . The drug-resistance to gefitinib in PTEN low expression cancer cells is reversed by irradiation in vitro. J Exp Clin Cancer Res 2009; 28: 123.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu Z, Gioeli D, Conaway M, Weber MJ, Theodorescu D . Restoration of PTEN expression alters the sensitivity of prostate cancer cells to EGFR inhibitors. Prostate 2008; 68: 935–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishioka C, Ikezoe T, Yang J, Yokoyama A . Multitargeted tyrosine kinase inhibitor stimulates expression of IL-6 and activates JAK2/STAT5 signaling in acute myelogenous leukemia cells. Leukemia 2009; 23: 2304–2308.

    Article  CAS  PubMed  Google Scholar 

  47. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009; 457: 51–56.

    Article  CAS  PubMed  Google Scholar 

  48. Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99: 16220–16225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture Sports, Science, and Technology of Japan (to TI), The Kochi University President's Discretionary Grant (to TI), Takeda Science Foundation (to TI), AstraZeneca Research Grant 2008 (to TI) and Sagawa Foundation for Promotion of Cancer Research (to TI). CN is grateful for a JSPS Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ikezoe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishioka, C., Ikezoe, T., Yang, J. et al. Long-term exposure of leukemia cells to multi-targeted tyrosine kinase inhibitor induces activations of AKT, ERK and STAT5 signaling via epigenetic silencing of the PTEN gene. Leukemia 24, 1631–1640 (2010). https://doi.org/10.1038/leu.2010.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.145

Keywords

This article is cited by

Search

Quick links